The kinetics of the redox reactions of the peroxomonosulfate ion (HSO(5)(-)) with iron(II), vanadium(IV), cerium(III), chloride, bromide, and iodide ions were studied. Cerium(III) is only oxidized upon illumination by UV light and cerium(IV) is produced in a photoreaction with a quantum yield of 0.33 +/- 0.03. Iron(II) and vanadium(IV) are most probably oxidized through one-electron transfer producing sulfate ion radicals as intermediates. The halide ions are oxidized in a formally two-electron process, which most likely includes oxygen-atom transfer. Comparison with literature data suggests that the activation entropies might be used as indicators distinguishing between heterolytic and homolytic cleavage of the peroxo bond in the redox reactions of HSO(5)(-).
An important reaction step in the industrial production of NaClO (electrochemical chlorate process) is the thermal decomposition of HOCl/OCl to yield ClO and Cl. It is widely accepted that this reaction is accelerated by aqueous chromium(vi) species. A detailed kinetic study was conducted under industrially relevant conditions, i.e. at high ionic strength (6.0 M) and elevated temperature (80 °C), to investigate this phenomenon. The decomposition of hypochlorous acid was followed in the presence of Cr(vi) or phosphate (PO) or without any additive. In addition to the beneficial pH buffering effect of Cr(vi), the CrO form of chromium(vi) was found to slightly catalyze the decomposition of hypochlorous acid. The overall rate of HOCl decomposition can be expressed as -dc/dt = k[HOCl][OCl] + k[HOCl][CrO]. The corresponding rate constants were determined, k = 9.4 ± 0.1 M s and k = 4.6 ± 0.8 M s, and mechanistic interpretation of the catalytic rate law is given. The contribution of the catalytic path to the overall rate of decomposition changes from ca. 30% at pH = 8 to ca. 70% at pH = 6.
Specific features of a silica-gelatin aerogel (3 wt.% gelatin content) in relation to drug delivery has been studied. It was confirmed that the release of both ibuprofen (IBU) and ketoprofen (KET) is about tenfold faster from loaded silica-gelatin aerogel than from pure silica aerogel, although the two matrices are structurally very similar. The main goal of the study was to understand the mechanistic background of the striking difference between the delivery properties of these closely related porous materials. Hydrated and dispersed silica-gelatin aerogel has been characterized by NMR cryoporometry, diffusiometry and relaxometry. The pore structure of the silica aerogel remains intact when it disintegrates in water. In contrast, dispersed silica-gelatin aerogel develops a strong hydration sphere, which reshapes the pore walls and deforms the pore structure. The drug release kinetics was studied on a few minutes time scale with 1s time resolution. Simultaneous evaluation of all relevant kinetic and structural information confirmed that strong hydration of the silica-gelatin skeleton facilitates the rapid desorption and dissolution of the drugs from the loaded aerogel. Such a driving force is not operative in pure silica aerogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.