Direct catalytic valorization of bioethanol to 1-butanol over different alumina supported catalysts was studied. Thirteen (13) heterogeneous catalysts were screened in search for the optimal material composition for direct one-pot conversion of ethanol to 1-butanol. For the most promising catalyst, a 25% ethanol conversion with 80% selectivity (among liquid carbon products) to 1-butanol could be reached at 250 °C. Additionally, the reaction kinetics and mechanisms were further investigated upon use of the most suitable catalyst candidate.
OPEN ACCESSCatalysts 2012, 2 69
TiO 2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradation of organic stains on the surface of flexible freestanding cellulose/catalyst composite films and in generation of hydrogen from ethanol using both suspended and immobilized catalysts are demonstrated. The performance of the nanofiber-based TiO 2 materials is competitive with-and in some cases outperforms-their conventional nanoparticle-based counterparts. In all cases, Pd-decorated TiO 2 nanoparticles and nanofibers proved to be more efficient than their Pt-based counterparts, which could be explained on the basis of the formation of nano-sized Schottky interfaces at the contacts between TiO 2 and metal nanoparticles. The feasibility of forming cellulose/catalyst composites provides a novel way of utilizing photocatalyst materials in large-area coatings and freestanding films.
An important reaction step in the industrial production of NaClO (electrochemical chlorate process) is the thermal decomposition of HOCl/OCl to yield ClO and Cl. It is widely accepted that this reaction is accelerated by aqueous chromium(vi) species. A detailed kinetic study was conducted under industrially relevant conditions, i.e. at high ionic strength (6.0 M) and elevated temperature (80 °C), to investigate this phenomenon. The decomposition of hypochlorous acid was followed in the presence of Cr(vi) or phosphate (PO) or without any additive. In addition to the beneficial pH buffering effect of Cr(vi), the CrO form of chromium(vi) was found to slightly catalyze the decomposition of hypochlorous acid. The overall rate of HOCl decomposition can be expressed as -dc/dt = k[HOCl][OCl] + k[HOCl][CrO]. The corresponding rate constants were determined, k = 9.4 ± 0.1 M s and k = 4.6 ± 0.8 M s, and mechanistic interpretation of the catalytic rate law is given. The contribution of the catalytic path to the overall rate of decomposition changes from ca. 30% at pH = 8 to ca. 70% at pH = 6.
Three-dimensional carbon nanotube scaffolds created using micromachined Si/SiO2 templates are used as nanoparticulate filters and support membranes for gas-phase heterogeneous catalysis. The filtering efficiency of better than 99% is shown for the scaffolds in filtering submicrometer particles from air. In the hydrogenation of propene to propane reaction low activation energy of E(a) approximately 27.8 +/- 0.6 kJ x mol(-1), a considerably high turnover rate of approximately 1.1 molecules x Pd site(-1) x s(-1) and durable activity for the reaction are observed with Pd decorated membranes. It is demonstrated that appropriate engineering of macroscopic-ordered nanotube architectures can lead to multifunctional applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.