Short-lived radicals generated in the photoexcitation of flavin adenine dinucleotide (FAD) in aqueous solution at low pH are detected with high sensitivity and spatial resolution using a newly developed transient optical absorption detection (TOAD) imaging microscope. Radicals can be studied under both flash photolysis and continuous irradiation conditions, providing a means of directly probing potential biological magnetoreception within sub-cellular structures. Direct spatial imaging of magnetic field effects (MFEs) by magnetic intensity modulation (MIM) imaging is demonstrated along with transfer and inversion of the magnetic field sensitivity of the flavin semiquinone radical concentration to that of the ground state of the flavin under strongly pumped reaction cycling conditions. A low field effect (LFE) on the flavin semiquinone-adenine radical pair is resolved for the first time, with important implications for biological magnetoreception through the radical pair mechanism.
The photochemical reactions of blue-light receptor proteins have received much attention due to their very important biological functions. In addition, there is also growing evidence that the one particular class of such proteins, the cryptochromes, may be associated with not only a biological photo-response but also a magneto-response, which may be responsible for the mechanism by which many animals can respond to the weak geomagnetic field. Therefore, there is an important scientific question over whether it is possible to directly observe such photochemical processes, and indeed the effects of weak magnetic fields thereon, taking place both in purified protein samples in vitro and in actual biochemical cells and tissues. For the former samples, the key lies in being able to make sensitive spectroscopic measurements on very small volumes of samples at potentially low protein concentrations, while the latter requires, in addition, spatially resolved measurements on length scales smaller than typical cellular components, i.e., sub-micron resolution. In this work, we discuss a two- and three-color confocal pump-probe microscopic approach to this question which satisfies these requirements and is thus useful for experimental measurements in both cases.
Sang, R. T. (2009). A hexapole magnetic guide for neutral atomic beams. Review of Scientific Instruments, 80(7), 073105-1/5. DOI: 10.1063/1.3176470 General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. In this paper we present a multiple element magnetic device to guide atoms using a spatially inhomogeneous magnetic field formed by a series of permanent hexapole magnets. The operation of the device is demonstrated using an enhanced beam of neon atoms in the 3 P 2 metastable state. These atoms are guided around a bend of 30°from their original path. A flux of 4.35ϫ 10 9 Ϯ 2 ϫ 10 7 atoms s −1 was measured after the device yielding a transmission efficiency of approximately 9% of the input flux. Simulations of the center of mass motion of the atoms through the magnetic guide have been performed giving reasonable agreement with the experimental results.
Figure 4. a) Simplified reaction scheme for FAD photoexcitation at pH 2.3. b) Reduction of the MFE on RP/PTS concentration with increasing pump light pulse length. c) Singlet excited state FAD fluorescence detected MARY curve under high power CW pump light modulation,revealing an inverse MFE on the FAD GS concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.