High tuneability of residual carbon doping is developed in a hot-wall metalorganic chemical vapor deposition reactor. Two orders of temperature-tuned carbon concentration, from ∼2 × 1018 cm−3 down to ∼1 × 1016 cm−3, can be effectively controlled in the growth of the GaN buffer layer. Excellent uniformity of two-dimensional electron gas (2DEG) properties in AlxGa1−xN/AlN/GaN heterostructure with very high average carrier density and mobility, 1.1 × 1013 cm−2 and 2035 cm2/V·s, respectively, over 3" semi-insulating SiC substrate is realized with the temperature-tuned carbon doping scheme. Reduction of carbon concentration is evidenced as a key to achieve high 2DEG carrier density and mobility
We demonstrate that 3.5% in-plane lattice mismatch between GaN (0001) epitaxial layers and SiC (0001) substrates can be accommodated without triggering extended defects over large areas using a grain-boundary-free AlN nucleation layer (NL). Defect formation in the initial epitaxial growth phase is thus significantly alleviated, confirmed by various characterization techniques. As a result, a high-quality 0.2-lm thin GaN layer can be grown on the AlN NL and directly serve as a channel layer in power devices, like high electron mobility transistors (HEMTs). The channel electrons exhibit a state-of-the-art mobility of >2000 cm 2 /V-s, in the AlGaN/GaN heterostructures without a conventional thick C-or Fe-doped buffer layer. The highly scaled transistor processed on the heterostructure with a nearly perfect GaN-SiC interface shows excellent DC and microwave performances. A peak RF power density of 5.8 W/mm was obtained at V DSQ ¼ 40 V and a fundamental frequency of 30 GHz. Moreover, an unpassivated 0.2-lm GaN/AlN/SiC stack shows lateral and vertical breakdowns at 1.5 kV. Perfecting the GaN-SiC interface enables a GaN-SiC hybrid material that combines the high-electron-velocity thin GaN with the high-breakdown bulk SiC, which promises further advances in a wide spectrum of high-frequency and power electronics. Published by AIP Publishing.
, Room-Temperature mobility above 2200 cm2/V.s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure, 2015, Applied Physics Letters, (106), 25. http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.