The term “System of Systems” (SoS) has been used since the 1950s to describe systems that are composed of independent constituent systems, which act jointly towards a common goal through the synergism between them. Examples of SoS arise in areas such as power grid technology, transport, production, and military enterprises. SoS engineering is challenged by the independence, heterogeneity, evolution, and emergence properties found in SoS. This article focuses on the role of model-based techniques within the SoS engineering field. A review of existing attempts to define and classify SoS is used to identify several dimensions that characterise SoS applications. The SoS field is exemplified by a series of representative systems selected from the literature on SoS applications. Within the area of model-based techniques the survey specifically reviews the state of the art for SoS modelling, architectural description, simulation, verification, and testing. Finally, the identified dimensions of SoS characteristics are used to identify research challenges and future research areas of model-based SoS engineering.
We describe INTO-CPS, a project that aims to realise the goal of integrated tool chains for the collaborative and multidisciplinary engineering of dependable Cyber-Physical Systems (CPSs). Challenges facing model-based CPS engineering are described, focussing on the semantic diversity of models, management of the large space of models and artefacts produced in CPS engineering, and the need to evaluate effectiveness in industrial settings. We outline the approach taken to each of these issues, particularly on the use of semantically integrated multi-models, links to architectural modelling, code generation and testing, and evaluation via industry-led studies. We describe progress on the development of a prototype tool chain from baseline tools, and discuss ongoing challenges and open research questions in this area.
Formal methods use mathematical models for analysis and verification at any part of the program life-cycle. We describe the state of the art in the industrial use of formal methods, concentrating on their increasing use at the earlier stages of specification and design. We do this by reporting on a new survey of industrial use, comparing the situation in 2009 with the most significant surveys carried out over the last 20 years. We describe some of the highlights of our survey by presenting a series of industrial projects, and we draw some observations from these surveys and records of experience. Based on this, we discuss the issues surrounding the industrial adoption of formal methods. Finally, we look to the future and describe the development of a Verified Software Repository, part of the worldwide Verified Software Initiative. We introduce the initial projects being used to populate the repository, and describe the challenges they address.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.