Phosphoribulokinase (PrkA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to create a heterologous Rubisco-based engineered pathway in Escherichia coli for in situ CO2 recycling. While the feasibility of a Rubisco-based engineered pathway has been shown, heterologous expressions of PrkA and Rubisco also induced physiological responses in E. coli that may compete with CO2 recycling. In this study, the metabolic shifts caused by PrkA and Rubisco were investigated in recombinant strains where ppc and pta genes (encodes phosphoenolpyruvate carboxylase and phosphate acetyltransferase, respectively) were deleted from E. coli MZLF (E. coli BL21(DE3) Δzwf, ΔldhA, Δfrd). It has been shown that the demand for ATP created by the expression of PrkA significantly enhanced the glucose consumptions of E. coli CC (MZLF Δppc) and E. coli CA (MZLF Δppc, Δpta). The accompanying metabolic shift is suggested to be the mgsA route (the methylglyoxal pathway) which results in the lactate production for reaching the redox balance. The overexpression of Rubisco not only enhanced glucose consumption but also bacterial growth. Instead of the mgsA route, the overproduction of the reducing power was balanced by the ethanol production. It is suggested that Rubisco induces a high demand for acetyl-CoA which is subsequently used by the glyoxylate shunt. Therefore, Rubisco can enhance bacterial growth. This study suggests that responses induced by the expression of PrkA and Rubisco will reach a new energy balance profile inside the cell. The new profile results in a new distribution of the carbon flow and thus carbons cannot be majorly directed to the Rubisco-based engineered pathway.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a key enzyme responsible for biological CO2 assimilation. RuBisCO can be heterologously expressed in Escherichia coli so that glucose and CO2 are co-metabolized to achieve high mixotrophic metabolite production, where the theoretical yield of mixotrophic metabolite production is 2.4 mol(ethanol+acetate+pyruvate)/molglucose. However, RuBisCO is known for its low kcat and for forming inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates, yet the inhibited form of RuBisCO can be reversed by RuBisCO activase (Rca). In this study, RuBisCO forms I and II were cloned and expressed in Escherichia coli for in situ CO2 recycling, where CO2 produced during glucose fermentation was recycled and co-metabolized with the glucose. In addition, forms I and II RuBisCO activases were co-expressed with RuBisCO in E. coli to determine their in vivo effects on in situ CO2 recycling. Form I RuBisCO activase (Rca1) was co-expressed with form I RuBisCO and form II RuBisCO activase (Rca2) was co-expressed with form II RuBisCO. The results showed that both form I and form II RuBisCO exhibit comparable activities in E. coli and generated similar levels of in situ CO2 recycling. A significant increase in the total metabolite yield from 1.5 ± 0.1 to 2.2 ± 0.1 mol(ethanol+acetate+pyruvate)/molglucose occurred when Rca2 was co-expressed with form II RuBisCO. Meanwhile, the total metabolite yield increased from 1.7 ± 0.1 to 2.0 ± 0.1 mol(ethanol+acetate+pyruvate)/molglucose when Rca1 was co-expressed with form I RuBisCO. This data suggests that both forms I and II RuBisCO are subject to in vivo RuBP inhibition yet can be relieved by the co-expression of Rca. Interestingly, it is suggested that the in vivo RuBP inhibition of form II RuBisCO can be more easily reversed compared to form I. When the catalytic power of RuBisCO is maintained by Rca, the high activity of phosphoribulokinase (Prk) plays an important role in directing glucose to the RuBisCO-based engineered pathway and fermentation yields of 2.1–2.3 mol(ethanol+acetate+pyruvate)/molglucose can be obtained. This study is the first to demonstrate that in vivo RuBP inhibition of RuBisCO can be a bottleneck for in situ CO2 recycling in E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.