The N-end rule is a conserved protein degradation pathway that relates the metabolic stability of a protein to the identity of its N-terminal residue. Proteins bearing a destabilising N-terminal residue (N-degron) are recognised by specialised components of the pathway (N-recognins) and degraded by cellular proteases. In bacteria, the N-recognin ClpS is responsible for the specific recognition of proteins bearing an N-terminal destabilising residue such as leucine, phenylalanine, tyrosine or tryptophan. In this study, we show that the putative apicoplast N-recognin from Plasmodium falciparum (PfClpS), in contrast to its bacterial homologues, exhibits an expanded substrate specificity that includes recognition of the branched chain amino acid isoleucine.
Targeted protein degradation is crucial for the correct function and maintenance of a cell. In bacteria, this process is largely performed by a handful of ATP-dependent machines, which generally consist of two components - an unfoldase and a peptidase. In some cases, however, substrate recognition by the protease may be regulated by specialized delivery factors (known as adaptor proteins). Our detailed understanding of how these machines are regulated to prevent uncontrolled degradation within a cell has permitted the identification of novel antimicrobials that dysregulate these machines, as well as the development of tunable degradation systems that have applications in biotechnology. Here, we focus on the physiological role of the ClpP peptidase in bacteria, its role as a novel antibiotic target and the use of protein degradation as a biotechnological approach to artificially control the expression levels of a protein of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.