Ca2+ handling in excitation-contraction coupling requires considerable O2 consumption (Vo 2) in cardiac contraction. We have developed an integrative method to quantify total Ca2+ handling in normal hearts. However, its direct application to failing hearts, where futile Ca2+ cycling via the Ca2+-leaky sarcoplasmic reticulum (SR) required an increased Ca2+handling Vo 2, was not legitimate. To quantify total Ca2+ handling even in such failing hearts, we combined futile Ca2+ cycling with Ca2+ handling Vo 2 and the internal Ca2+ recirculation fraction via the SR. We applied this method to the canine heart mechanoenergetics before and after intracoronary ryanodine at nanomolar concentrations. We found that total Ca2+ handling per beat was halved after the ryanodine treatment from ∼60 μmol/kg left ventricle before ryanodine. We also found that futile Ca2+ cycling via the SR increased to >1 cycle/beat after ryanodine from presumably zero before ryanodine. These results support the applicability of the present method to the failing hearts with futile Ca2+ cycling via the SR.
Our short interactive animation video helped patients' understanding of anesthesia and reduced anesthesiologists' interview time.
We analyzed total Ca handling of the left ventricle (LV) in the mildly failing heart preparation induced by a temporary intracoronary Ca overloading intervention in eight excised and cross-circulated canine hearts. This Ca intervention consisted of interruption of coronary blood perfusion by Ca-free oxygenated Tyrode perfusion for 10 min followed by high-Ca (16mmol/l) oxygenated Tyrode perfusion for 5 min. This intervention decreased the LV contractility index, Emax (end-systolic maximum elastance), by 40% after restoration of the blood cross-circulation. We expected a Ca overload or paradox failing heart resembling the postischemic stunned heart and being characterized by an increased O2 cost of Emax. However, LV O2 consumption under mechanically unloading conditions decreased by 30% from control without increasing the O2 cost of Emax. To obtain a mechanistic view of this failing heart, we investigated cardiac total Ca handling by our integrative analysis method. In this method, we obtained the internal Ca recirculation fraction (RF) from the decay beat constant of the postextrasystolic potentiation following each sporadic spontaneous extrasystole in these failing LVs. We combined the RF with the decreased Emax and the unchanged O2 cost of Emax in our recently developed formula of total Ca handling. We found that these failing LVs had a slightly but significantly increased RF accompanied by either a slightly increased futile Ca cycling or a slightly decreased Ca reactivity of Emax, or both. Any of these three possible changes can account for the unchanged O2 cost of Emax. This result indicates that the present mildly failing heart has not yet fallen into a typical Ca overload or paradox by the temporary Ca overloading intervention.
We investigated the effects of intracoronary Ca2+ and epinephrine on the intracellular Ca2+ recirculation fraction (RF) and total Ca2+ handling in the left ventricle (LV) of the excised cross-circulated canine heart preparation. We analyzed LV postextrasystolic potentiation (PESP) following a spontaneous extrasystole that occurred sporadically under constant atrial pacing. All PESPs decayed in alternans and none decayed monotonically. We extracted an exponential decay component from the alternans PESP, determined its beat constant (taue), and calculated RF = exp(-1/taue). Increased intracoronary Ca2+ slightly increased taue and RF, but epinephrine did not change them, although both agents enhanced LV contractility 2-3 times. Neither Ca2+ nor epinephrine affected the sinusoidal decay of the alternans PESP. These results indicate that RF via the sarcoplasmic reticulum was slightly augmented by Ca2+, but not by epinephrine. We combined these RF data with LV Ca2+ handling O2 consumption data and obtained 40-110 micromol/kg as the total amount of Ca2+ handled in one cardiac cycle in the control and enhanced contractile states. These results indicate that this new LV-level approach seems to better the understanding of the Ca2+ mass dynamics responsible for the mechanoenergetics enhanced by inotropic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.