Ca2+ handling in excitation-contraction coupling requires considerable O2 consumption (Vo 2) in cardiac contraction. We have developed an integrative method to quantify total Ca2+ handling in normal hearts. However, its direct application to failing hearts, where futile Ca2+ cycling via the Ca2+-leaky sarcoplasmic reticulum (SR) required an increased Ca2+handling Vo 2, was not legitimate. To quantify total Ca2+ handling even in such failing hearts, we combined futile Ca2+ cycling with Ca2+ handling Vo 2 and the internal Ca2+ recirculation fraction via the SR. We applied this method to the canine heart mechanoenergetics before and after intracoronary ryanodine at nanomolar concentrations. We found that total Ca2+ handling per beat was halved after the ryanodine treatment from ∼60 μmol/kg left ventricle before ryanodine. We also found that futile Ca2+ cycling via the SR increased to >1 cycle/beat after ryanodine from presumably zero before ryanodine. These results support the applicability of the present method to the failing hearts with futile Ca2+ cycling via the SR.
Little is known about the mechanisms responsible for the adaptation and changes in the capillary network of hindlimb unweighting (HU)-induced atrophied skeletal muscle, especially the coupling between functional and structural alterations of intercapillary anastomoses and tortuosity of capillaries. We hypothesized that muscle atrophy by HU leads to the apoptotic regression of the capillaries and intercapillary anastomoses with their functional alteration in hemodynamics. To clarify the three-dimensional architecture of the capillary network, contrast medium-injected rat soleus muscles were visualized clearly using a confocal laser scanning microscope, and sections were stained by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) and with anti-von Willebrand factor. In vivo, the red blood cell velocity of soleus muscle capillaries were determined with a pencil-lens intravital microscope brought into direct contact with the soleus surface. After HU, the total muscle mass, myofibril protein mass, and slow-type myosin heavy chain content were significantly lower. The number of capillaries paralleling muscle fiber and red blood cells velocity were higher in atrophied soleus. However, the mean capillary volume and capillary luminal diameter were significantly smaller after HU than in the age-matched control group. In addition, we found that the number of anastomoses and the tortuosity were significantly lower and TUNEL-positive endothelial cells were observed in atrophied soleus muscles, especially the anastomoses and/or tortuous capillaries. These results indicate that muscle atrophy by HU generates structural alterations in the capillary network, and apoptosis appears to occur in the endothelial cell of the muscle capillaries. intercapllary anastomosis; tortuosity; capillary volume; capillary lumen; erythrocyte velocity; disuse atrophy; endothelial terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling SKELETAL MUSCLE CAPILLARIES run tortuously along muscle fibers in the relaxed resting state (2,4,18,20,33). These capillaries are connected with anastomoses, which run orthogonally to muscle fiber direction like parallel rungs of ladder (12, 33). Capillary-to-fiber (C/F) ratio is frequently used to evaluate O 2 supply capacity in skeletal muscle (27). In fact, the C/F ratio is higher in rat soleus muscle, which mainly contains slow oxidative fibers (type I), than in extensor digitorum longus, which is predominantly comprised of fast glycolytic fibers (type IIb) (1, 8, 13). C/F ratio was increased by the augmentation of muscle activity, e.g., exercise or electrical stimulation (9,14,20,25), and was decreased by disuse (14, 31, 33). Histological sections from earlier studies of capillary remodeling in skeletal muscle with disuse atrophy demonstrate a decrease in capillary luminal diameter (16,36) and in the C/F ratio (13, 31, 32) despite an increase in capillary density (13,31,32).Although the regression of anastomoses in atrophied skeletal muscle has not been well studied, it wa...
We tested our hypothesis that the O2 wasting of Ca2+ handling in the excitation-contraction (E-C) coupling in ryanodine-treated failing hearts could be reflected by a decrease in the internal Ca2+ recirculation fraction (RF). We have reported, using canine excised cross-circulated hearts, that intracoronary ryanodine (40 nmol/l blood) halved left ventricular contractility without decreasing myocardial O2 consumption for the E-C coupling. We previously suspected this mechanoenergetic state to manifest energy wasting of Ca2+ handling due to ryanodine causing leakage of Ca2+ from the sarcoplasmic reticulum. To test this hypothesis, we analyzed all the sporadic spontaneous cases of postextrasystolic potentiation (PESP) obtained during the ryanodine experiments. We calculated RF from the beat constant of the exponential decay component of not only the monotonic type but also the transient alternans type of PESP. Results showed that ryanodine significantly decreased the beat constant in both types of PESP from about 2 to 1.5 beats and hence RF from 0.6 to 0.5 on the average, supporting the hypothesis. This organ-level systems approach to Ca2+ handling using transient alternans PESP as well as monotonic PESP may help obtain better insights into the mechanoenergetics of failing hearts.
In isolated, blood-perfused canine hearts, postextrasystolic potentiation (PESP) decays monotonically after a noncompensatory pause following a spontaneous extrasystole (ES). The monotonic PESP decay yields myocardial internal Ca(2+) recirculation fraction (RF). We have found that after a compensatory pause (CP), PESP decays in alternans, consisting of an exponential and a sinusoidal decay component. We have proposed that this exponential component also yields RF. In the present study, we examined the reliability of this alternative method by widely changing the ES coupling interval (ESI), CP, and heart rate in the canine excised, cross-circulated left ventricle. We found that all PESP decays consisted of the sum of an exponential and a sinusoidal decay component of variable magnitudes whether a CP existed or not. Their decay constants as well as the calculated RF were independent of the ESI and CP. This confirmed the utility of our alternative RF determination method regardless of the ESI, CP, and heart rate. Direct experimental evidence of Ca(2+) dynamics supportive of this alternative method, however, remains to be obtained.
We have recently reported that the postextrasystolic contractile potentiation decays in alternans after a compensatory pause in canine left ventricles even under normal coronary and contractile conditions. The transient alternans appears to consist primarily of a small-magnitude exponential decay and a large-magnitude sinusoidal decay. We, therefore, hypothesized that the contractility (y) of the postextrasystolic alternans beats (beat number x) could be expressed as y = a x exp[-(x-1)/b] + c x exp[-(x-1)/d] x sin[pi(x-0.5)] + yo, where a and c are the normalized magnitudes (relative to the preceding regular beat) of the two exponential terms in the first postextrasystolic beat, b and d are their time constants, and yo is the normalized magnitude of the post-alternans regular beat (approximately 1). The first exponential term represents the monotonic decay. The sine term multiplied by the second exponential term represents the alternating decay. Mathematical curve-fitting indicated: 1) the above equation very closely fitted the alternans data with a squared correlation coefficient of 0.9996 on average, 2) c was 7 times on average greater than a, indicating dominance of the sine component, 3) b and d were 2.5 and 1.0 beats on average, indicating a faster decay of the sine component, and 4) this b was comparable to the time constant of the exponential decay of the postextrasystolic potentiation after no compensatory pause. This study suggests that myocardium has a mechanism to switch the postextrasystolic potentiation between the exponential and alternans decays depending on the first postextrasystolic interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.