A new fuzzy enhancement method is put forward in the paper combining with Young-Helmholtz (Y-H) color space and fuzzy set theory. Color images with RGB tri-channels are transformed into Y-H color space by using Greaves transformation method. The colors image could be decomposed into chromaticity numbers matrix and intensity numbers matrix. The intensity numbers matrix is processed by using fuzzy enhancement arithmetic, while chromaticity numbers matrix keeps invariant. The primary chromaticity numbers matrix and enhanced intensity numbers matrix are processed by using Y-H inverse transformation. The method put forward in the paper have characteristics of efficiency, convenience and high speed. The method can achieve enhancement for color medical images without changing hue and saturation.
This study put forward a novel high precision digital curvilinear displacement sensor.The high frequency pulses were used to represent the magnitude of curvilinear displacement based on geometry analyse. The mechanical structure design of the sensor was completed. The working principle of curvilinear displacement sensor was analyzed in detail. The hardware and software design of the interface circuit of the sensor was completed and the performance of the sensor was analyzed. Compared with the traditional curvilinear displacement sensors, the sensor proposed in this paper has features of high precision, efficiency, explicit structure, low cost, wide measuring range, no need to adjust zero and it has general application value in industry field.
In order to resolve the problem of seam tracking of the welding robots with unknown noise characteristics, a Weighted Multi-Sensor Data Fusion (MSDF) algorithm based on the fuzzy Kalman filter algorithm is proposed. Firstly, each Fuzzy Kalman Filter (FKF) uses a fuzzy inference system based on a covariance matching technique to adjust the weight coefficient of measurement noise covariance matrix, so it makes measurement noise close to the true noise level. Secondly, a membership function in fuzzy set is used to measure the mutual support degree matrix of each FKF and corresponding weight coefficients are allocated by this matrix’s maximum modulus eigenvectors, hence, the final expression of data fusion is obtained. Finally, simulation results show that MSDF in seam tracking has both high precision and strong ability of stableness.
Traditional Static Synchronous Compensator(STATCOM ) compensates most singly for reactive power or steady state voltage in high power field. On this point, the paper puts forward a harmonic frequency compensation technique, which can realize dynamic reactive power compensation as well as harmonic control of less than 20th power. Then, using average switching method, it gives the mathematical model on the device. Active and reactive current decoupling is realized. For the electrical model, the compensator developed uses 8-cascaded H bridge structure, together with the carrier phase-shifted SVM technology, can realize 17 level voltage waveform output, having high utilization and easy to realize digital. Finally, simulation and experimental results show that the harmonic frequency control technology developed for 6kV cascade compensator can be used on the actual electric network, with low switching frequency. The device can together compensate reactive power and control harmonic accurately and effectively.
This study put forward a novel high precision digital angular displacement sensor. The mechanical structure design of the sensor was completed. The working principle of angular displacement sensor was analyzed in detail. The hardware and software design of the interface circuit of the sensor was completed and the performance of the sensor was analyzed. Compared with the traditional angular displacement sensors, the angular displacement sensor proposed in this paper has features of high precision, efficiency, explicit structure, better maintainability, low cost, wide measuring range, direction-judgement, no need to adjust zero and it has general application value in industry field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.