DAVID is a popular bioinformatics resource system including a web server and web service for functional annotation and enrichment analyses of gene lists. It consists of a comprehensive knowledgebase and a set of functional analysis tools. Here, we report all updates made in 2021. The DAVID Gene system was rebuilt to gain coverage of more organisms, which increased the taxonomy coverage from 17 399 to 55 464. All existing annotation types have been updated, if available, based on the new DAVID Gene system. Compared with the last version, the number of gene-term records for most annotation types within the updated Knowledgebase have significantly increased. Moreover, we have incorporated new annotations in the Knowledgebase including small molecule-gene interactions from PubChem, drug-gene interactions from DrugBank, tissue expression information from the Human Protein Atlas, disease information from DisGeNET, and pathways from WikiPathways and PathBank. Eight of ten subgroups split from Uniprot Keyword annotation were assigned to specific types. Finally, we added a species parameter for uploading a list of gene symbols to minimize the ambiguity between species, which increases the efficiency of the list upload and eliminates confusion for users. These current updates have significantly expanded the Knowledgebase and enhanced the discovery power of DAVID.
SUMMARY Innate lymphoid cells (ILCs) expressing the nuclear receptor RORγt are essential for gut immunity presumably through production of interleukin (IL)-22. The molecular mechanism underlying the development of RORγt+ ILCs is poorly understood. Here, we have shown that the aryl hydrocarbon receptor (Ahr) plays an essential role in RORγt+ ILC maintenance and function. Expression of Ahr in the hematopoietic compartment was important for accumulation of adult but not fetal intestinal RORγt+ ILCs. Without Ahr, RORγt+ ILCs had increased apoptosis and less production of IL-22. RORγt interacted with Ahr and promoted Ahr binding at the Il22 locus. Upon IL-23 stimulation, Ahr-deficient RORγt+ ILCs had reduced IL-22 expression, consistent with downregulation of IL-23R in those cells. Ahr-deficient mice succumbed to Citrobacter rodentium infection, while ectopic expression of IL-22 protected animals from early mortality. Our data uncover a previously unrecognized physiological role for Ahr in promoting innate gut immunity by regulating RORγt+ ILCs.
Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.microbiome | barrier | IL-22
SUMMARY Aryl hydrocarbon receptor (Ahr) is crucial for the maintenance and function of group 3 innate lymphoid cells (ILCs), which are important in gut immunity. Because Ahr promotes T helper 17 (Th17) cell differentiation in vitro, it is reasonable to expect that Ahr would enhance Th17 cells in vivo. Instead, we show that Ahr deficiency caused increased intestinal Th17 cells, raising the possibility that group 3 ILCs could negatively regulate Th17 cells. Reduced innate interleukin-22 (IL-22) in Ahr-deficient mice allowed expansion of commensal segmented filamentous bacteria (SFB), known to promote Th17 cells. Compared to Rorc+/+Ahr−/− mice, Rorcgfp/+Ahr−/− mice had further reduced group 3 ILCs and were prone to spontaneous colitis with increased SFB and Th17 cells. Innate expression of Ahr played a protective role in T-cell-mediated experimental colitis by suppressing pathogenic Th17 cells. Our data reveal an intricate balance between ILCs and Th17 cells regulated by Ahr and commensal flora.
The intestinal epithelial barrier plays a critical role in the mucosal immunity. However, it remains largely unknown how the epithelial barrier is maintained after damage. Here we show that growth factor FGF2 synergized with interleukin-17 (IL-17) to induce genes for repairing of damaged epithelium. FGF2 or IL-17 deficiency resulted in impaired epithelial proliferation, increased pro-inflammatory microbiota outgrowth, and consequently worse pathology in a DSS-induced colitis model. The dysregulated microbiota in the model induced transforming growth factor beta 1 (TGFβ1) expression, which in turn induced FGF2 expression mainly in regulatory T cells. Act1, an essential adaptor in IL-17 signaling, suppressed FGF2-induced ERK activation through binding to adaptor molecule GRB2 to interfere with its association with guanine nucleotide exchange factor SOS1. Act1 preferentially bound to IL-17 receptor complex, releasing its suppressive effect on FGF2 signaling. Thus, microbiota-driven FGF2 and IL-17 cooperate to repair the damaged intestinal epithelium through Act1-mediated direct signaling cross-talk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.