Traumatic brain injury (TBI) has high morbidity and mortality rates. The mechanisms underlying TBI are unclear and may include the change in biological material in exosomes. Circular ribonucleic acids (circRNAs) are enriched and stable in exosomes, which can function as microRNA (miRNA) sponges to regulate gene expression levels. Therefore, we speculated that circRNAs in exosomes might play an important role in regulating gene expression after TBI and then regulate specific signaling pathways, which may protect the brain. We first isolated exosomes from the brain extracellular space in mice with TBI by digestion. We then investigated the alterations in circRNA expression in exosomes by high-throughput whole transcriptome sequencing, analyzed the data by gene ontology (GO) and pathway analysis, and constructed the circRNA-miRNA network. In this study, we identified 231 significantly and differentially expressed circRNAs, including 155 that were upregulated and 76 that were downregulated. GO analysis showed that these differentially expressed circRNAs might be related to the growth and repair of neurons, the development of the nervous system, and the transmission of nerve signals. The most highly correlated pathways that we identified were involved primarily with glutamatergic synapse and the cyclic guanosine monophosphate-protein kinase G signaling pathway. The circRNA-miRNA network predicted the potential roles of these differentially expressed circRNAs and the interaction of circRNAs with miRNAs. Our study broadens the horizon of research on gene regulation in exosomes from the brain extracellular space after TBI and provides novel targets for further research on both the molecular mechanisms of TBI and the potential intervention therapy targets.
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity worldwide. Tools available for diagnosis and therapy are limited. Small extracellular vesicle (sEV) microRNAs (miRNAs) play an important role in TBI disease progression. This study aimed to investigate the alterations in sEV miRNAs expression in the mouse brain extracellular space after TBI. Twenty-four C57BL/6J mice were randomly divided into two groups (12/group). The TBI group was subjected to all surgical procedures and fluid percussion injury (FPI). The sham group only underwent surgery. Brain specimens were collected 3 h after TBI/sham. The brain sEV were isolated. Differentially expressed miRNAs were identified. A total of 50 miRNAs were observed to be differentially expressed (fold change ≥1.5 and P <0.05) after TBI, including 5 upregulated and 45 downregulated. The major enriched Gene Ontology terms were metabolic processes, cell, intracellular, organelle, cytoplasm, axon, binding, protein kinase activity, protein binding, and protein dimerization activity. The KEGG pathway analysis predicted that the pathways affected by the variation of miRNAs in sEVs after TBI included the Wnt signaling pathway and NF-κB signaling pathway. The changes in five miRNAs were confirmed by qRT-PCR. In conclusion, this study demonstrated the differential expression of a series of miRNAs in brain sEV after TBI, which might be correlated with post-TBI physiological and pathological processes. The findings might also provide novel targets for further investigating the molecular mechanisms underlying TBI and potential therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.