Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included.
CONTENTS
A model for synchronization of globally coupled phase oscillators including "inertial" effects is analyzed. In such a model, both oscillator frequencies and phases evolve in time. Stationary solutions include incoherent (unsynchronized) and synchronized states of the oscillator population. Assuming a Lorentzian distribution of oscillator natural frequencies, g(Ω), both larger inertia or larger frequency spread stabilize the incoherent solution, thereby making harder to synchronize the population. In the limiting case g(Ω) = δ(Ω), the critical coupling becomes independent of inertia. A richer phenomenology is found for bimodal distributions. For instance, inertial effects may destabilize incoherence, giving rise to bifurcating synchronized standing wave states. Inertia tends to harden the bifurcation from incoherence to synchronized states: at zero inertia, this bifurcation is supercritical (soft), but it tends to become subcritical (hard) as inertia increases. Nonlinear stability is investigated in the limit of high natural frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.