Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included.
CONTENTS
In the last decade, non-linear dynamical transport in semiconductor superlattices (SLs) has witnessed significant progress in theoretical descriptions as well as in experimentally observed non-linear phenomena. However, until now, a clear distinction between non-linear transport in strongly and weakly coupled SLs was missing, although it is necessary to provide a detailed description of the observed phenomena. In this review, strongly coupled SLs are described by spatially continuous equations and display self-sustained current oscillations due to the periodic motion of a charge dipole as in the Gunn effect for bulk semiconductors. In contrast, weakly coupled SLs have to be described by spatially discrete equations. Therefore, weakly coupled SLs exhibit a more complex dynamical behaviour than strongly coupled ones, which includes the formation of stationary electric field domains, pinning or propagation of domain walls consisting of a charge monopole, switching between stationary domains, self-sustained current oscillations due to the recycling motion of a charge monopole and chaos. This review summarizes the existing theories and the experimentally observed non-linear phenomena for both types of semiconductor SLs.
Tunable oscillatory modes of electric-field domains in doped semiconductor
superlattices are reported. The experimental investigations demonstrate the
realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the
temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes
is determined using an analytical and a numerical modeling of the dynamics of
domain formation. Three different oscillatory modes are found. Their presence
depends on the actual shape of the drift velocity curve, the doping density,
the boundary condition, and the length of the superlattice. For most bias
regions, the self-sustained oscillations are due to the formation, motion, and
recycling of the domain boundary inside the superlattice. For some biases, the
strengths of the low and high field domain change periodically in time with the
domain boundary being pinned within a few quantum wells. The dependency of the
frequency on the coupling leads to the prediction of a new type of tunable GHz
oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure
A discrete model is introduced to account for the time-periodic oscillations of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40 period AlAs/GaAs superlattice. Basic ingredients are an effective negative differential resistance due to the sequential resonant tunneling of the photoexcited carriers through the potential barriers, and a rate equation for the holes that incorporates photogeneration and recombination. The photoexciting laser acts as a damping factor ending the oscillations when its power is large enough. The model explains: (i) the known oscillatory static I-V characteristic curve through the formation of a domain wall connecting high and low electric field domains, and (ii) the photocurrent and photoluminescence time-dependent oscillations after the domain wall is formed. In our model, they arise from the combined motion of the wall and the shift of the values of the electric field at the domains. Up to a certain value of the photoexcitation, the non-uniform field profile with two domains turns out to be metastable: after the photocurrent oscillations have ceased, the field profile slowly relaxes toward the uniform stationary solution (which is reached on a much longer time scale). Multiple stability of stationary states and hysteresis are also found. An interpretation of the oscillations in the photoluminescence spectrum is also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.