Raman spectroscopy is a technique widely used to detect defects in semiconductors because it provides information of structural or chemical defects produced in its structure. In the case of graphene monolayer, the Raman spectrum presents two bands centered at 1582 cm−1 (G band) and 2700 cm−1 (2D band). However, when the periodic lattice of graphene is broken by different types of defects, new bands appear. This is the situation for the Raman spectrum of graphene oxide. It is well established that the existence of these bands, the position and the intensity or width of peaks can provide information about the origin of defects. However, in the case of the graphene oxide spectrum, we can find in the literature several discrepant results, probably due to differences in chemical composition and the type of defects of the graphene oxide used in these studies. Besides, theoretical calculations proved that the shape of bands, intensity and width, and the position of graphene oxide Raman spectrum depend on the atomic configuration. In the current work, we will summarize our current understanding of the effect of the chemical composition on the Raman spectrum of graphene oxide. Finally, we apply all this information to analyze the evolution of the structure of graphene oxide during the thermal annealing of the heterostructures formed by graphene oxide sandwiches in a hexagonal boron nitride.
We report on a novel implementation of the cryo-etching method, which enabled us to fabricate low-roughness hBN-encapsulated graphene nanoconstrictions with unprecedented control of the structure edges; the typical edge roughness is on the order of a few nanometers. We characterized the system by atomic force microscopy and used the measured parameters of the edge geometry in numerical simulations of the system conductance, which agree quantitatively with our low temperature transport measurements. The quality of our devices is confirmed by the observation of well defined quantized 2e2/h conductance steps at zero magnetic field. To the best of our knowledge, such an observation reports the clearest conductance quantization in physically etched graphene nanoconstrictions. The fabrication of such high quality systems and the scalability of the cryo-etching method opens a novel promising possibility of producing more complex truly-ballistic devices based on graphene.
Terahertz (THz) waves have revealed a great potential for use in various fields and for a wide range of challenging applications. High-performance detectors are, however, vital for exploitation of THz technology. Graphene plasmonic THz detectors have proven to be promising optoelectronic devices, but improving their performance is still necessary. In this work, an asymmetric-dual-grating-gate graphene-terahertz-field-effect-transistor with a graphite back-gate was fabricated and characterized under illumination of 0.3 THz radiation in the temperature range from 4.5 K up to the room temperature. The device was fabricated as a sub-THz detector using a heterostructure of h-BN/Graphene/h-BN/Graphite to make a transistor with a double asymmetric-grating-top-gate and a continuous graphite back-gate. By biasing the metallic top-gates and the graphite back-gate, abrupt n+n (or p+p) or np (or pn) junctions with different potential barriers are formed along the graphene layer leading to enhancement of the THz rectified signal by about an order of magnitude. The plasmonic rectification for graphene containing np junctions is interpreted as due to the plasmonic electron-hole ratchet mechanism, whereas, for graphene with n+n junctions, rectification is attributed to the differential plasmonic drag effect. This work shows a new way of responsivity enhancement and paves the way towards new record performances of graphene THz nano-photodetectors.
Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.