This paper shows how has been applied ISO-25964 standard to represent the UNESCO thesaurus through semantic web technologies. Based on the works done by the UNESKOS project, has been analyzed the joint use of SKOS and ISO THES ontologies to represent thesauri according to the data model of the ISO-25964 standard. The result has been an RDF dataset, accessible as Linked Open Data, using SKOS and ISO-THES with the properties of a vocabulary developed in the context of UNESKOS project. The conclusions point, among other aspects, a review of SKOS and adoption of appropriate technologies that facilitate the development of future works and research lines focused on the alignment of vocabularies
Purpose -This paper examines the Records in Contexts proposal of a conceptual model (RiC-CM) from the International Council on Archives' (ICA) archival description and proposes an OWL ontology for its implementation in the semantic web.Design/methodology/approach -The various elements of the model are studied and are related to earlier norms in order to understand their structure and the modeling of the ontology. Findings -The analysis reveals the integrating nature of RiC-CM and the possibilities it offers for greater interoperability of data from archival descriptions. Two versions of an OWL ontology were developed to represent the conceptual model. The first makes a direct transposition of the conceptual model; the second optimizes the properties and relations in order to simplify the use and maintenance of the ontology. Research limitations / implications -The proposed ontology will follow the considerations of the final version of the ICA's RiC-CM. Practical implications -The analysis affords an understanding of the role of RiC-CM in publishing online archival datasets, while the ontology is an initial approach to the semantic web technologies involved.Originality/value -The paper offers an overview of Records in Contexts with respect to the advantages in the field of semantic interoperability, and supposes the first proposal of an ontology based on the conceptual model.
A method for quickly and dynamically building controlled vocabularies, especially for the media, using Wikidata and Wikipedia as sources of terminological information, is proposed. The method is applied to construct a vocabulary about the Covid-19 pandemic. For this purpose, it is proposed to exploit the structure of items and properties of Wikidata and links and backlinks of Wikipedia articles. Using a process based on the definition of Wikidata relationship expansion rules, an algorithm was designed, starting from a set of initial items and then being executed in successive iterations, followed by a review of the results. In this way, the Wikidata entities relevant to the thematic coverage of the vocabulary are collected. The algorithm has been implemented in an open-source application whose results for the Covid-19 pandemic vocabulary collection have been published in a repository. The algorithm can be used to verify the results using the same or other expansion rules or applied to compile vocabularies in other thematic areas. The results in terms of the elements collected in each iteration and the validation proposal through the links and backlinks of Wikipedia articles are also analyzed. The application of SKOS to achieve an interoperable representation of vocabularies obtained by this method is proposed as future work. Resumen Se propone un método para la construcción ágil y dinámica de vocabularios controlados, especialmente para los medios de comunicación, utilizando Wikidata y Wikipedia como fuentes de información terminológica. El método se aplica a la construcción de un vocabulario sobre la pandemia de Covid-19. Para ello se propone la explotación de la estructura de items y propiedades de Wikidata y de los enlaces salientes y entradas de los artículos de Wikipedia. Mediante un proceso de definición de reglas de expansión de relaciones de Wikidata se ha diseñado un algoritmo en el que se parte de un conjunto de items iniciales y en sucesivas iteraciones y revisión de resultados se recopilan las declaraciones relevantes a la temática del vocabulario. El algoritmo se ha implementado en una aplicación cuyo código y resultados de recopilación del vocabulario sobre la pandemia de Covid-19 se ha publicado en un repositorio abierto. Esto permite utilizar el algoritmo tanto para verificar los resultados usando las mismas u otras reglas de expansión como para su aplicación a la recopilación de vocabularios de otras temáticas. En los resultados también se analizan los elementos recopilados en cada iteración, la propuesta de validación mediante los enlaces entrantes y salientes de los artículos, dejando como futuros trabajos la aplicación de SKOS para la representación interoperable de los vocabularios obtenidos mediante este método.
Participa en proyectos de innovación docente sobre el uso de Wikipedia en la educación superior. Desde 2009 es presidente de Anabad Murcia.
Resumen: A partir de Wikipedia, como fuente de conocimiento organizado en forma de artículos enciclopédicos, editada mediante la colaboración masiva online, se han desarrollado dos proyectos de carácter semántico: DBpedia y Wikidata. Se analizan las diferencias y similitudes entre ambos modelos de datos y modelo de producción, y se especula sobre la posible evolución y coexistencia de ambos a partir de sus puntos fuertes. Su fortaleza como grafo abierto de conocimiento multidominio aporta un gran valor a la extensión de la web de datos, al actuar como punto de interconexión entre diferentes dominios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.