Seismic and infrasound multistation ambient‐noise interferometry has been widely used to infer ground and atmospheric properties, and single‐station and autocorrelation seismic interferometry has also shown potential for characterizing Earth structure at multiple scales. We extend autocorrelation seismic interferometry to ambient atmospheric infrasound recordings that contain persistent local noise from waterfalls and rivers. Across a range of geographic settings, we retrieve relative sound‐speed changes that exhibit clear diurnal oscillations consistent with temperature and wind variations. We estimate ambient air temperatures from variations in relative sound speeds. The frequency band from 1 to 2 Hz appears most suitable to retrieve weather parameters as nearby waterfalls and rivers may act as continuous and vigorous sources of infrasound that help achieve convergence of coherent phases in the autocorrelation codas. This frequency band is also appropriate for local sound‐speed variations because it has infrasound with wavelengths of ∼170–340 m, corresponding to a typical atmospheric boundary layer height. After applying array analysis to autocorrelation functions derived from a three‐element infrasound array, we find that autocorrelation codas are composed of waves reflected off nearby topographic features, such as caldera walls. Lastly, we demonstrate that autocorrelation infrasound interferometry offers the potential to study the atmosphere over at least several months and with a fine time resolution.
Monitoring the evolution of lava flows is a challenging task for volcano observatories, especially in remote volcanic areas. Here we present a near real-time (every 12 h) and free tool for producing interactive thermal maps of the advance of lava flows over time by taking advantage of the free thermal data provided by FIRMS and the open-source R software. To achieve this, we applied two filters on the FIRMS datasets, one on the satellite layout (track) and another on the fire radiative power (FRP). To determine the latter, we carried out a detailed statistical analysis of the FRP values of nine hotspot subaerial eruptions that included Cumbre Vieja-2021 (Spain), Fagradalsfjall-2021 (Iceland), LERZ Kilauea-2018 (USA), and six eruptions on the Galápagos Archipelago (Ecuador). We found that an FRP filter of 35 ± 17 MW/pixel worked well at the onset and during the first weeks of an eruption. Afterward, once the cumulative statistical parameters had stabilized, a filter that better fit the investigated case could be obtained by running our statistical code. Using the suggested filters, the thermal maps resulting from our mapping code have an accuracy higher than 75% on average when compared with the official lava flow maps of each eruption and an offset of only 3% regarding the maximum lava flow extension. Therefore, our easy-to-use codes constitute an additional, novel, and simple tool for rapid preliminary mapping of lava fields during crises, especially when regular overflights and/or unoccupied aerial vehicle campaigns are out of budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.