Given a matrix polynomial W(x), matrix bi-orthogonal polynomials with respect to the sesquilinear formwhere µ(x) is a matrix of Borel measures supported in some infinite subset of the real line, are considered. Connection formulas between the sequences of matrix bi-orthogonal polynomials with respect to •, • W and matrix polynomials orthogonal with respect to µ(x) are presented. In particular, for the case of nonsingular leading coefficients of the perturbation matrix polynomial W(x) we present a generalization of the Christoffel formula constructed in terms of the Jordan chains of W(x). For perturbations with a singular leading coefficient several examples by Durán et al are revisited. Finally, we extend these results to the non-Abelian 2D Toda lattice hierarchy. CONTENTS 1991 Mathematics Subject Classification. 42C05,15A23. Key words and phrases. Matrix orthogonal polynomials, Block Jacobi matrices, Darboux-Christoffel transformation, Block Cholesky decomposition, Block LU decomposition, quasi-determinants, non-Abelian Toda hierarchy. GA thanks financial support from the Universidad Complutense de Madrid Program "Ayudas para Becas y Contratos Complutenses Predoctorales en España 2011".MM & FM thanks financial support from the Spanish "Ministerio de Economía y Competitividad" research project MTM2012-36732-C03-01, Ortogonalidad y aproximación; teoría y aplicaciones.
In this paper, Geronimus-Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss-Borel factorization of the Gram matrix. Geronimus-Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus-Uvarov transformations, first for
We consider multiple Geronimus transformations and show that they lead to discrete (non-diagonal) Sobolev type inner products. Moreover, it is shown that every discrete Sobolev inner product can be obtained as a multiple Geronimus transformation. A connection with Geronimus spectral transformations for matrix orthogonal polynomials is also considered.2010 Mathematics Subject Classification:Primary 42C05; Secondary 15A23.
In this paper, Geronimus transformations for matrix orthogonal polynomials in the real line are studied. The orthogonality is understood in a broad sense, and is given in terms of a nondegenerate continuous sesquilinear form, which in turn is determined by a quasi-definite matrix of bivariate generalized functions with a well-defined support. The discussion of the orthogonality for such a sesquilinear form includes, among others, matrix Hankel cases with linear functionals, general matrix Sobolev orthogonality and discrete orthogonal polynomials with an infinite support. The results are mainly concerned with the derivation of Christoffel-type formulas, which allow to express the perturbed matrix biorthogonal polynomials and its norms in terms of the original ones. The basic tool is the Gauss–Borel factorization of the Gram matrix, and particular attention is paid to the non-associative character, in general, of the product of semi-infinite matrices. The Geronimus transformation in which a right multiplication by the inverse of a matrix polynomial and an addition of adequate masses are performed, is considered. The resolvent matrix and connection formulas are given. Two different methods are developed. A spectral one, based on the spectral properties of the perturbing polynomial, and constructed in terms of the second kind functions. This approach requires the perturbing matrix polynomial to have a nonsingular leading term. Then, using spectral techniques and spectral jets, Christoffel–Geronimus formulas for the transformed polynomials and norms are presented. For this type of transformations, the paper also proposes an alternative method, which does not require of spectral techniques, that is valid also for singular leading coefficients. When the leading term is nonsingular, a comparison of between both methods is presented. The nonspectral method is applied to unimodular Christoffel perturbations, and a simple example for a degree one massless Geronimus perturbation is given.
Re-use and distribution is strictly not permitted, except for Open Access articles. G. Ariznabarreta et al. norms are presented. For this type of transformations, the paper also proposes an alternative method, which does not require of spectral techniques, that is valid also for singular leading coefficients. When the leading term is nonsingular, a comparison of between both methods is presented. The nonspectral method is applied to unimodular Christoffel perturbations, and a simple example for a degree one massless Geronimus perturbation is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.