During the course of cancer progression, neoplastic cells undergo dynamic and reversible transitions between multiple phenotypic states, and this plasticity is enabled by underlying shifts in epigenetic regulation. Our results identified a negative feedback loop in which SET9 controls DNA methyltransferase-1 protein stability, which represses the transcriptional activity of the SET9 promoter in coordination with Snail. The modulation of SET9 expression in breast cancer cells revealed a connection with E2F1 and the silencing of SET9 was sufficient to complete an epigenetic program that favored epithelial-mesenchymal transition and the generation of cancer stem cells, indicating that SET9 plays a role in modulating breast cancer metastasis. SET9 expression levels were significantly higher in samples from patients with pathological complete remission than in samples from patients with disease recurrence, which indicates that SET9 acts as a tumor suppressor in breast cancer and that its expression may serve as a prognostic marker for malignancy.
The quantification of adenosine deaminase (ADA) in porcine saliva samples has been analyzed for its use as a marker of disease. First, an analytical validation of the enzymatic assay used for ADA measurements was performed. Afterwards, saliva samples were collected from 50 healthy animals and 64 animals with different symptoms of disease, which were divided into local inflammation, gastrointestinal disorder, respiratory disorder and growth retardation. To optimize ADA measurements, total ADA (tADA), specific ADA (sADA) and ADA isoforms 1 and 2 activities were calculated. Moreover, to preliminarily estimate the diagnostic value of tADA activity measurements for disease detection, receiver operating characteristic (ROC) analyses was performed and compared to the results obtained for salivary acute phase proteins, haptoglobin (Hp) and C-reactive protein (CRP). The salivary levels of tADA activity were significantly elevated in animals with local inflammation, gastrointestinal disorder and respiratory disorder. The calculation of the different ADA activities did not provide additional information to tADA activity quantification for disease detection. The diagnostic value of tADA activity was superior to those observed for Hp and CRP measurements in the present study. It might be concluded that ADA analysis in saliva could be used as a simple, rapid, economic and non-invasive diagnostic tool in porcine production in field conditions.
Dilated cardiomyopathy (DCM) belongs to the most frequent forms of cardiomyopathy mainly characterized by cardiac dilatation and reduced systolic function. Although most cases of DCM are classified as sporadic, 20–30% of cases show a heritable pattern. Familial forms of DCM are genetically heterogeneous, and mutations in several genes have been identified that most commonly play a role in cytoskeleton and sarcomere-associated processes. Still, a large number of familial cases remain unsolved. Here, we report five individuals from three independent families who presented with severe dilated cardiomyopathy during the neonatal period. Using whole-exome sequencing (WES), we identified causative, compound heterozygous missense variants in RPL3L (ribosomal protein L3-like) in all the affected individuals. The identified variants co-segregated with the disease in each of the three families and were absent or very rare in the human population, in line with an autosomal recessive inheritance pattern. They are located within the conserved RPL3 domain of the protein and were classified as deleterious by several in silico prediction software applications. RPL3L is one of the four non-canonical riboprotein genes and it encodes the 60S ribosomal protein L3-like protein that is highly expressed only in cardiac and skeletal muscle. Three-dimensional homology modeling and in silico analysis of the affected residues in RPL3L indicate that the identified changes specifically alter the interaction of RPL3L with the RNA components of the 60S ribosomal subunit and thus destabilize its binding to the 60S subunit. In conclusion, we report that bi-allelic pathogenic variants in RPL3L are causative of an early-onset, severe neonatal form of dilated cardiomyopathy, and we show for the first time that cytoplasmic ribosomal proteins are involved in the pathogenesis of non-syndromic cardiomyopathies.
Abstract:The distribution and glycosylation of acetyicholinesterase (AChE) forms in vesicles derived from sarcoplasmic reticulum of normal muscle (NMV) were investigated and compared with those from dystrophic muscle vesicles (DMV). AChE activity was similar in NMV and DMV. Most of the AChE in NMV and half in DMV were released with Triton X-1 00. Asymmetric (A 12) and globular hydrophilic and amphiphilic (G~, G~, G~, and G~) AChE species occurred in NMV and DMV, the lighter forms being predominant. The percentage of G~and G~de-creased in DMV. A fraction of the AChE that could not be extracted with detergent was detached with collagenase. Most of the detergent-released A12 AChE from NMV and nearly half in DMV failed to bind to Ricinus communis agglutinin (RCA-I). Conversely, the collagenase-detached isoforms bound to RCA, revealing that asymmetric AChE associated with internal membranes or basal lamina differed in glycosylation. Moreover, nearly half of GÃChE in DMV and a few in NMV bound to RCA. Most of the RCA-unreactive Gforms in NMV come from sarcolemma. The results indicate that dystrophy induces minor changes in the distribution and glycosylation of AChE forms in internal membranes of muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.