Abstract. We prove that, if E is a real JB*-triple having a predual E * , then E * is the unique predual of E and the triple product on E is separately σ(E, E * )−continuous.
Mathematics Subject Classification (1991):17C65, 46K70, 46L05, 46L10, 46L70
In [19], R. Kadison proved that every surjective linear isometry $\Phi{:}\, {\C A} \to {\C B}$ between two unital C*-algebras has the form $$\Phi (x) = u T (x), \hbox{ $x\in {\C A}$,}$$ where $u$ is a unitary element in ${\C B}$ and $T$ is a Jordan *-isomorphism from${\C A}$ onto ${\C B}$. This result extends the classical Banach–Stone theorem [3, 32] obtained in the 1930s to non-abelian unital C*-algebras. A. L. Paterson and A. M. Sinclair extended Kadison's result to surjective isometries between C*-algebras by replacing the unitary element $u$ by a unitary element in the multiplier C*-algebra of the range algebra [28]. Thus, every surjective linear isometry between C*-algebras preserves the triple products as $$\J xyz \,{=}\, 2^{-1} ( x y^* z + z y^* x).$$
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.