There is now an impetus to apply dynamic stochastic general equilibrium models to forecasting. But these models typically rely on purpose-built data, for example on tradable and nontradable sector outputs. How then do we know that the model will forecast well, in advance? We develop an early warning test of the database-model match and apply that to a Colombian model. Our test reveals where the combination should work (consumption) and where not (in investment). The test can be adapted to look at many likely sources of DSGE model failure.
This study evaluates the accuracy of a set of techniques that approximate the solution of continuous-time Dynamic Stochastic General Equilibrium models. Using the neoclassical growth model, I compare linear-quadratic, perturbation, and projection methods. All techniques are applied to the Hamilton–Jacobi–Bellman equation and the optimality conditions that define the general equilibrium of the economy. Two cases are studied depending on whether a closed-form solution is available. I also analyze how different degrees of non-linearities affect the approximated solution. The results encourage the use of perturbations for reasonable values of the structural parameters of the model and suggest the use of projection methods when a high degree of accuracy is required.
We study the statistical properties of heterogeneous agent models. Using a Bewley-Hugget-Aiyagari model we compute the density function of wealth and income and use it for likelihood inference. We study the finite sample properties of the maximum likelihood estimator (MLE) using Monte Carlo experiments on artificial cross-sections of wealth and income. We propose to use the Kullback-Leibler divergence to investigate identification problems that may affect inference. Our results suggest that the unrestricted MLE leads to considerable biases of some parameters. Calibrating weakly identified parameters allows to pin down the other unidentified parameter without compromising the estimation of the remaining parameters. We illustrate our approach by estimating the model for the U.S. economy using wealth and income data from the Survey of Consumer Finances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.