This paper is devoted to track-bridge interaction phenomena in railway bridges of short simply-supported (SS) spans composed by ballasted tracks. These structures may experience high vertical acceleration levels under operating conditions. In particular, the coupling effect exerted by the ballast track shared by structural parts that are theoretically independent, such as consecutive simply-supported spans or twin adjacent single-track decks, is investigated. Experimental evidence shows that in these cases there may be an important vibration transmission from the loaded to the unloaded track, and that the interlocked ballast granules couple some of the lowest modes of vibration to an important extent. To this end a detailed three-dimensional (3D) Finite Element (FE) model of an existing bridge is implemented where the ballast in weakly connected regions is simulated as transversely isotropic material, in order to represent in a simplified manner the degraded state due to the relative motion between the disconnected structural parts. First, the bridge numerical model is updated from the ambient vibration response of the structure previously measured by the authors. Second, a sensitivity analysis is performed on the properties of the degraded ballast and their effect on the first five modes of vibration of the bridge is discussed. Finally, the response of the bridge under operating conditions is computed numerically, compared with the response measured experimentally in the time and frequency domains and conclusions are extracted regarding the model adequacy.
A significant number of railway bridges composed by simply-supported (SS) spans are present in existing railway lines. Special attention must be paid to short to medium span length structures, as they are prone to experience high vertical acceleration levels at the deck, due to their low weight and damping, compromising the travelling comfort and the structural integrity. The accurate prediction of the dynamic response of these bridges is a complex issue since it is affected by uncertain factors such as structural damping and complex interaction mechanisms such as vehicle-bridge, soil-structure or track-bridge interaction. Concerning track-bridge interaction, experimental evidences of a dynamic coupling exerted by the ballasted track between subsequent SS spans and also between structurally independent single-track twin adjacent decks have been reported in the literature [1, 2]. Nevertheless, this phenomenon is frequently disregarded due to the computational cost of models including the track and due to the uncertainties in the mechanical parameters that define the track system. The present work contributes to the study of the coupling effect exerted by the ballasted track between independent structures in railway bridges. With this purpose two 3D finite element (FE) track-bridge interaction models are implemented. The former includes a continuous representation of the track components meshing the sleepers, ballast and sub-ballast with solid FE. In the latter, the track is represented as a 2D discrete three-layer model where the mass, stiffness and damping of the components are concentrated at the sleepers locations. The numerical models are updated with experimental measurements performed on an existing railway bridge in a view to evaluate (i) the influence of the track continuity on the bridge modal parameters and on the train-induced vibrations; (ii) the adequacy of the implemented numerical models and (iii) the importance of the track-bridge interaction for an accurate prediction of the vertical acceleration levels under operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.