In, Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates. These schemes use a node-based discretization of the numerical fluxes. The control volume version has several distinguished properties, including the conservation of mass, momentum and total energy and compatibility with the geometric conservation law (GCL). However it also has a limitation in that it cannot preserve spherical symmetry for one-dimensional spherical flow. An alternative is also given to use the first order area-weighted approach which can ensure spherical symmetry, at the price of sacrificing conservation of momentum. In this paper, we apply the methodology proposed in our recent work to the first order control volume scheme of Maire in to obtain the spherical symmetry property. The modified scheme can preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid, and meanwhile it maintains its original good properties such as conservation and GCL. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of symmetry, non-oscillation and robustness properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.