Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.
In the last decade, many vehicles which contain components to monitor different conditions (such as driver monitoring, tire pressure, oil pressure, vehicle speed, acceleration and position) have emerged. Internet of Things (IoT) is enabling the collection of different types of information from a given environment. The integration of results from both trends has led to the emergence of the concept of Internet of Vehicles (IoV). The implementation of IoV requires devices (sensors, personal devices, actuators, among others) to communicate with other devices and the infrastructure using different technologies. Such device interactions face several design challenges such as incompatibility among the devices, different qualities and response times for the Internet connection, limited processing and storage capabilities. To address these challenges, we propose a comprehensive framework that supports a layered design architecture capable of providing seamless integration for inter-device communication into the IoV ecosystem. We also present a review of recently proposed IoV architectures and discuss their salient differences with our proposed architecture.
With the increase in global life expectancy and the advance of technology, the creation of age-friendly environments is a priority in the design of new products for elderly people healthcare. This paper presents a proposal for a real-time health monitoring system of older adults living in geriatric residences. This system was developed to help caregivers to have a better control in monitoring the health of their patients and have closer communication with their patients’ family members. To validate the feasibility and effectiveness of this proposal, a prototype was built, using a biometric bracelet connected to a mobile application, which allows real-time visualization of all the information generated by the sensors (heart rate, body temperature, and blood oxygenation) in the bracelet. Using these data, caregivers can make decisions about the health status of their patients. The evaluation found that the users perceived the system to be easy to learn and use, providing initial evidence that our proposal could improve the quality of the adult’s healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.