Rett syndrome (RTT) is a postnatal neurodevelopmental disorder characterized by the loss of acquired motor and language skills, autistic features, and unusual stereotyped movements. RTT is caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Mutations in MECP2 cause a variety of neurodevelopmental disorders including X-linked mental retardation, psychiatric disorders, and some cases of autism. Although MeCP2 was identified as a methylation-dependent transcriptional repressor, transcriptional profiling of RNAs from mice lacking MeCP2 did not reveal significant gene expression changes, suggesting that MeCP2 does not simply function as a global repressor. Changes in expression of a few genes have been observed, but these alterations do not explain the full spectrum of Rett-like phenotypes, raising the possibility that additional MeCP2 functions play a role in pathogenesis. In this study, we show that MeCP2 interacts with the RNA-binding protein Y box-binding protein 1 and regulates splicing of reporter minigenes. Importantly, we found aberrant alternative splicing patterns in a mouse model of RTT. Thus, we uncovered a previously uncharacterized function of MeCP2 that involves regulation of splicing, in addition to its role as a transcriptional repressor.
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine-encoding repeat in SCA1. In all known polyglutamine diseases, the glutamine expansion confers toxic functions onto the protein. The mechanism by which this occurs remains enigmatic, however, in light of the fact that the mutant protein apparently maintains interactions with its usual partners. Here we show that the expanded polyglutamine tract differentially affects the function of the host protein in the context of different endogenous protein complexes. Polyglutamine expansion in Ataxin1 favors the formation of a particular protein complex containing RBM17, contributing to SCA1 neuropathology via a gain-of-function mechanism. Concomitantly, polyglutamine expansion attenuates the formation and function of another protein complex containing Ataxin1/Capicua, contributing to SCA1 via a partial loss-of-function mechanism. This model provides mechanistic insight into the molecular pathogenesis of SCA1 as well as other polyglutamine diseases.Expansion of an unstable translated CAG repeat located in different disease genes so far causes nine dominantly inherited neurodegenerative disorders, the so-called polyglutamine diseases: Huntington's disease (HD), spinobulbar muscular atrophy (SBMA), dentatorubropallidoluysian atrophy (DRPLA), and six autosomal dominant spinocerebellar ataxias (SCAs) 1 . As would be expected for dominant mutations, polyglutamine expansions confer toxic properties on the host proteins 1-3 ; animal models genetically lacking the polyglutamine-containing proteins do not develop neurodegeneration 4-7 . However, expansion of the polyglutamine tract is necessary but not sufficient to cause pathology: in the case of SCA1, for example, expanded Ataxin1 (ATXN1) does not produce cerebellar degeneration if it lacks the nuclear localization signal 8 or the AXH domain 9 , or if a serine to alanine substitution prevents phosphorylation at residue 776 10 . These and other studies in HHMI Author Manuscript HHMI Author Manuscript HHMI Author ManuscriptSBMA and HD indicate that protein domains outside of the polyglutamine tract play a significant role in the selective neurotoxicity observed in these diseases 11-18 . Moreover, they suggest that there is a relationship between the normal functions of the wild-type proteins and the toxic functions of their expanded counterparts. Given that mouse and fly models overexpressing wild-type ATXN1 develop a mild version of SCA1 19 begs the question of whether the glutamine expansion enhances some interactions to mediate the gain-of-function.To gain a foothold on this question, we sought to characterize protein partners of ATXN1 that interact with it in a manner dependent on two criteria necessary for toxicity: polyglutamine expansion and phosphorylation at serine 776 (S776). We have identified RBM17 (RNA binding motif protein 17) as a protein that meets these criteria. Here we show that ATXN1 forms at least two distinct, large native complex...
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by expansion of a translated CAG repeat in Ataxin-1 (ATXN1). To determine the long-term effects of exercise, we implemented a mild exercise regimen in a mouse model of SCA1 and found a considerable improvement in survival accompanied by upregulation of epidermal growth factor and consequential downregulation of Capicua, an ATXN1 interactor. Offspring of Capicua mutant mice bred to SCA1 mice showed significant improvement of all disease phenotypes. Although polyglutamine-expanded Atxn1 caused some loss of Capicua function, further reducing Capicua levels, either genetically or by exercise, mitigated the disease phenotypes. Thus, exercise might have long-term beneficial effects in other ataxias and neurodegenerative diseases.
Summary Although expansion of CAG repeats in ATAXIN1 (ATXN1) causes Spinocerebellar ataxia type 1, the functions of ATXN1 and ATAXIN1-Like (ATXN1L) remain poorly understood. To investigate the function of these proteins, we generated and characterized Atxn1L−/− and Atxn1−/−; Atxn1L−/− mice. Atxn1L−/− mice have hydrocephalus, omphalocoele and lung alveolarization defects. These phenotypes are more penetrant and severe in Atxn1−/−; Atxn1L−/− mice, suggesting that Atxn1 and Atxn1L are functionally redundant. Upon pursuing the molecular mechanism, we discovered that several Matrix metalloproteinase (Mmp) genes are overexpressed and that the transcriptional repressor Capicua (Cic) is destabilized in Atxn1L−/− lungs. Consistent with this, Cic deficiency causes lung alveolarization defect. Loss of either Atxn1L or Cic derepresses Etv4, an activator for Mmp genes, thereby mediating Mmp9 overexpression. These findings demonstrate a critical role of ATXN1/ATXN1L-CIC complexes in extracellular matrix (ECM) remodeling during development and their potential roles in pathogenesis of disorders affecting ECM remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.