Rett syndrome (RTT) is a postnatal neurodevelopmental disorder characterized by the loss of acquired motor and language skills, autistic features, and unusual stereotyped movements. RTT is caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Mutations in
MECP2
cause a variety of neurodevelopmental disorders including X-linked mental retardation, psychiatric disorders, and some cases of autism. Although MeCP2 was identified as a methylation-dependent transcriptional repressor, transcriptional profiling of RNAs from mice lacking MeCP2 did not reveal significant gene expression changes, suggesting that MeCP2 does not simply function as a global repressor. Changes in expression of a few genes have been observed, but these alterations do not explain the full spectrum of Rett-like phenotypes, raising the possibility that additional MeCP2 functions play a role in pathogenesis. In this study, we show that MeCP2 interacts with the RNA-binding protein Y box-binding protein 1 and regulates splicing of reporter minigenes. Importantly, we found aberrant alternative splicing patterns in a mouse model of RTT. Thus, we uncovered a previously uncharacterized function of MeCP2 that involves regulation of splicing, in addition to its role as a transcriptional repressor.
Increasing evidence indicates that transcription and pre-mRNA processing are functionally coupled to modulate gene expression. Here, we report that two members of the U2AF65 family of proteins, hCC1.3, which we call CAPERalpha, and a related protein, CAPERbeta, regulate both steroid hormone receptor-mediated transcription and alternative splicing. The CAPER proteins coactivate the progesterone receptor in luciferase transcription reporter assays and alter alternative splicing of a calcitonin/calcitonin gene-related peptide minigene in a hormone-dependent manner. The importance of CAPER coactivators in the regulation of alternative RNA splicing of an endogenous cellular gene (VEGF) was substantiated by siRNA knockdown of CAPERalpha. Mutational analysis of CAPERbeta indicates that the transcriptional and splicing functions are located in distinct and separable domains of the protein. These results indicate that steroid hormone receptor-regulated transcription and pre-mRNA splicing can be directly linked through dual function coactivator molecules such as CAPERalpha and CAPERbeta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.