The orphan nuclear hormone receptor SHP interacts with a number of other nuclear hormone receptors and inhibits their transcriptional activity. Several mechanisms have been suggested to account for this inhibition. Here we show that SHP inhibits transactivation by the orphan receptor hepatocyte nuclear factor 4 (HNF-4) and the retinoid X receptor (RXR) by at least two mechanisms. SHP interacts with the same HNF-4 surface recognized by transcriptional coactivators and competes with them for binding in vivo. The minimal SHP sequences previously found to be required for interaction with other receptors are sufficient for interaction with HNF-4, although deletion results indicate that additional C-terminal sequences are necessary for full binding and coactivator competition. These additional sequences include those associated with direct transcriptional repressor activity of SHP. SHP also competes with coactivators for binding to ligand-activated RXR, and based on the ligand-dependent interaction with other nuclear receptors, it is likely that coactivator competition is a general feature of SHP-mediated repression. The minimal receptor interaction domain of SHP is sufficient for full interaction with RXR, as previously described. This domain is also sufficient for full coactivator competition. Functionally, however, full inhibition of RXR transactivation requires the presence of the C-terminal repressor domain, with only weak inhibition associated with this receptor interaction domain. Overall, these results suggest that SHP represses nuclear hormone receptor-mediated transactivation via two separate steps: first by competition with coactivators and then by direct effects of its transcriptional repressor function.Nuclear hormone receptors are transcription factors whose activities are regulated by direct binding of small lipophilic molecules such as steroids, thyroid hormone, retinoids, and vitamin D 3 (24). These receptors have been studied extensively due to their important roles in the control of development and cellular homeostasis. The nuclear hormone receptor superfamily also includes numerous orphan receptors, which do not have identified ligands (10, 23). The structural similarities shared by superfamily members reside in two distinct functional domains. The first and most highly conserved is the DNA binding domain, also called the C domain, which targets receptors to specific DNA sequences known as hormone response elements. The second is the ligand binding domain (LBD), which is also called the E domain. It is located in the C-terminal region and is involved in several functions in addition to ligand binding, including dimerization and ligand-dependent transcriptional activation.Crystallographic studies (e.g., references 30, 43, and 46) have revealed that ligand binding provokes a conformational change in the receptors that allows them to bind a diverse group of proteins termed coactivators (reviewed in references 14, 37, and 47). These coactivators bind to a common surface of the receptors formed by sever...
Increasing evidence indicates that transcription and pre-mRNA processing are functionally coupled to modulate gene expression. Here, we report that two members of the U2AF65 family of proteins, hCC1.3, which we call CAPERalpha, and a related protein, CAPERbeta, regulate both steroid hormone receptor-mediated transcription and alternative splicing. The CAPER proteins coactivate the progesterone receptor in luciferase transcription reporter assays and alter alternative splicing of a calcitonin/calcitonin gene-related peptide minigene in a hormone-dependent manner. The importance of CAPER coactivators in the regulation of alternative RNA splicing of an endogenous cellular gene (VEGF) was substantiated by siRNA knockdown of CAPERalpha. Mutational analysis of CAPERbeta indicates that the transcriptional and splicing functions are located in distinct and separable domains of the protein. These results indicate that steroid hormone receptor-regulated transcription and pre-mRNA splicing can be directly linked through dual function coactivator molecules such as CAPERalpha and CAPERbeta.
MYB (the human ortholog of c- myb ) is expressed in a high proportion of human breast tumors, and that expression correlates strongly with estrogen receptor (ER) positivity. This may reflect the fact that MYB is a target of estrogen/ER signaling. Because in many cases MYB expression appears to be regulated by transcriptional attenuation or pausing in the first intron, we first investigated whether this mechanism was involved in estrogen/ER modulation of MYB . We found that this was the case and that estrogen acted directly to relieve attenuation due to sequences within the first intron, specifically, a region potentially capable of forming a stem–loop structure in the transcript and an adjacent poly(dT) tract. Secondly, given the involvement of MYB in hematopoietic and colon tumors, we also asked whether MYB was required for the proliferation of breast cancer cells. We found that proliferation of ER + but not ER − breast cancer cell lines was inhibited when MYB expression was suppressed by using either antisense oligonucleotides or RNA interference. Our results show that MYB is an effector of estrogen/ER signaling and provide demonstration of a functional role of MYB in breast cancer.
The products of the cytochrome P450 (CYP) genes play an important role in the detoxification of xenobiotics and environmental contaminants, and many foreign chemicals or xenobiotics can induce their expression. We have previously shown that the nuclear hormone receptor CAR (Constitutive Androstane Receptor, NR113) mediates the well studied induction of CYP2B10 gene expression by phenobarbital (PB) and 1, 4-bis-[2-(3, 5,-dichloropyridyloxy)] benzene (TCPOBOP). We have used the CAR knockout mouse model to explore the broader functions of this xenobiotic receptor. In addition to the liver, CAR is expressed in the epithelial cells of the villi in the small intestine, and this expression is required for CYP2B10 induction in response to PB and TCPOBOP in those cells. In agreement with previous observations that CAR can bind to regulatory elements in CYP3A genes, CAR is also required for induction of expression of CYP3A11 in response to both PB and TCPOBOP in liver. In males, CAR is also required for induction of liver CYP2A4 expression. In wild type animals, pretreatment with the CAR inverse agonist androstenol blocks the response of both the CYP2B10 and CYP3A11 genes to PB and TCPOBOP, and decreases basal CYP3A11 expression. CAR is also required for the response of CYP2B10 to several additional xenobiotic inducers, including chlorpromazine, clotrimazole and dieldrin, but not dexamethasone, an agonist for both the xenobiotic receptor PXR (Pregnane X Receptor NR112) and the glucocorticoid receptor. Chlorpromazine induction of CYP3A11 is also absent in CAR-deficient animals, but the responses to clotrimazole and dieldrin are retained, indicating that both of these inducers can also activate PXR (Pregnane X Receptor NR112). We conclude that CAR has broad functions in xenobiotic responses. Some are specific to CAR but others, including induction of the important drug metabolizing enzyme CYP3A, overlap with those of PXR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.