The interplay of structure, composition and electrical conductivity was investigated for Fe-doped SrTiO3 thin films prepared by pulsed laser deposition. Structural information was obtained by reciprocal space mapping while solution-based...
Cuprous oxide (Cu2O) is a promising p-type semiconductor material for many applications. So far, the lowest resistivity values are obtained for films deposited by physical methods and/or at high temperatures (~1000 °C), limiting their mass integration. Here, Cu2O thin films with ultra-low resistivity values of 0.4 Ω.cm were deposited at only 260 °C by atmospheric pressure spatial atomic layer deposition, a scalable chemical approach. The carrier concentration (7.1014−2.1018 cm−3), mobility (1–86 cm2/V.s), and optical bandgap (2.2–2.48 eV) are easily tuned by adjusting the fraction of oxygen used during deposition. The properties of the films are correlated to the defect landscape, as revealed by a combination of techniques (positron annihilation spectroscopy (PAS), Raman spectroscopy and photoluminescence). Our results reveal the existence of large complex defects and the decrease of the overall defect concentration in the films with increasing oxygen fraction used during deposition.
Oxygen mass transport in perovskite oxides is relevant for a variety of energy and information technologies. In oxide thin films, cation nonstoichiometry is often found but its impact on the oxygen transport properties is not well understood. Here, we used oxygen isotope exchange depth profile technique coupled with secondary ion mass spectrometry (IEDP-SIMS) to study oxygen mass transport and the defect compensation mechanism of Mn-deficient La0.8Sr0.2MnyO3±δ epitaxial thin films. Oxygen diffusivity and surface exchange coefficients were observed to be consistent with literature measurements and to be independent on the degree of Mn deficiency in the layers. Defect chemistry modelling, together with a collection of different experimental techniques, suggests that the Mn-deficiency is mainly compensated by the formation of LaMn
x antisite defects. The results highlight the importance of antisite defects in perovskite thin films for mitigating cationic nonstoichiometry effects on oxygen mass transport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.