Reinforcement learning (RL) is a powerful paradigm that has gained popularity across multiple domains.However, applying RL may come at a cost of multiple interactions between the agent and the environment. This cost can be especially pronounced when the single feedback from the environment is slow or computationally expensive, causing extensive periods of nonproductivity. Curriculum learning (CL) provides a suitable alternative by arranging a sequence of tasks of increasing complexity with the aim of reducing the overall cost of learning. Here, we demonstrate the application of CL for drug discovery. We implement CL in the de novo design platform, REINVENT, and apply it on illustrative de novo molecular design problems of different complexity. The results show both accelerated learning and a positive impact on the quality of the output when compared to standard policy based RL. To our knowledge, this is the first application of CL for the purposes of de novo molecular design. The code is freely available at https://github.com/MolecularAI/Reinvent.
This paper examines the use of Virtual Learning Objects (VLO) in the teaching of differential calculus in the area of Management Sciences as a teaching strategy to improve the assimilation of the theoretical knowledge acquired in the classroom courses. This is accomplished by the construction of virtual pedagogical practices concerning to optimization problems through GeoGebra. It is free software that generates VLOs with an adequate contrast between the theoretical mathematical knowledge and its practical application in Management Sciences. Thus, different dynamic, algorithmic and heuristic processes are encouraged, being useful for logic and constructivist student training. The proposed methodology is based on the construction of VLOs (Virtual Learning Objects). It allows choosing variables in the GeoGebra software where students can interact with the formulation of mathematical problems applied to their curricula. So, they strengthen their knowledge and have a greater autonomy in the analysis of optimization problems in financial and management field. The results show how these teaching strategies facilitate the assimilation of the concepts of differential calculus in Management Sciences students. This allows a greater development of student skills in front of the understanding of the geometric behaviour of a curve.
Reinforcement learning (RL) is a powerful paradigm that has gained popularity across multiple domains. However, applying RL may come at a cost of multiple interactions between the agent and the environment. This cost can be especially pronounced when the single feedback from the environment is slow or computationally expensive, causing extensive periods of nonproductivity. Curriculum learning (CL) provides a suitable alternative by arranging a sequence of tasks of increasing complexity with the aim of reducing the overall cost of learning. Here, we demonstrate the application of CL for drug discovery. We implement CL in the de novo design platform, REINVENT, and apply it on illustrative de novo molecular design problems of different complexity. The results show both accelerated learning and a positive impact on the quality of the output when compared to standard policy based RL. To our knowledge, this is the first application of CL for the purposes of de novo molecular design. The code is freely available at https://github.com/MolecularAI/Reinvent.
Fiber optic specklegram sensors use the modal interference pattern (or specklegram) to determine the magnitude of a disturbance. The most used interrogation methods for these sensors have focused on point measurements of intensity or correlations between specklegrams, with limitations in sensitivity and useful measurement range. To investigate alternative methods of specklegram interrogation that improve the performance of the fiber specklegram sensors, we implemented and compared two deep learning models: a classification model and a regression model. To test and train the models, we use physical-optical models and simulations by the finite element method to create a database of specklegram images, covering the temperature range between 0 °C and 100 °C. With the prediction tests, we showed that both models can cover the entire proposed temperature range and achieve an accuracy of 99.5%, for the classification model, and a mean absolute error of 2.3 °C, in the regression model. We believe that these results show that the strategies implemented can improve the metrological capabilities of this type of sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.