BackgroundBacterial division is produced by the formation of a macromolecular complex in the middle of the cell, called the divisome, formed by more than 10 proteins. This process can be divided into two steps, in which the first is the polymerization of FtsZ to form the Z ring in the cytoplasm, and then the sequential addition of FtsA/ZipA to anchor the ring at the cytoplasmic membrane, a stage completed by FtsEX and FtsK. In the second step, the formation of the peptidoglycan synthesis machinery in the periplasm takes place, followed by cell division. The proteins involved in connecting both steps in cell division are FtsQ, FtsB and FtsL, and their interaction is a crucial and conserved event in the division of different bacteria. These components are small bitopic membrane proteins, and their specific function seems to be mainly structural. The purpose of this study was to obtain a structural model of the periplasmic part of the FtsB/FtsL/FtsQ complex, using bioinformatics tools and experimental data reported in the literature.ResultsTwo oligomeric models for the periplasmic region of the FtsB/FtsL/FtsQ E. coli complex were obtained from bioinformatics analysis. The FtsB/FtsL subcomplex was modelled as a coiled-coil based on sequence information and several stoichiometric possibilities. The crystallographic structure of FtsQ was added to this complex, through protein-protein docking. Two final structurally-stable models, one trimeric and one hexameric, were obtained. The nature of the protein-protein contacts was energetically favourable in both models and the overall structures were in agreement with the experimental evidence reported.ConclusionsThe two models obtained for the FtsB/FtsL/FtsQ complex were stable and thus compatible with the in vivo periplasmic complex structure. Although the hexameric model 2:2:2 has features that indicate that this is the most plausible structure, the ternary complex 1:1:1 cannot be discarded. Both models could be further stabilized by the binding of the other proteins of the divisome. The bioinformatics modelling of this kind of protein complex, whose function is mainly structural, provide useful information. Experimental results should confirm or reject these models and provide new data for future bioinformatics studies to refine the models.
Abstract— Chain folding of horseradish peroxidase allocates its sole tryptophanyl residue at a distance of 18 A from the active site heme group as determined by electronic energy transfer. This finding confirms that the phosphorescence spectrum observed in the peroxidase catalyzed oxidation of isobutyraldehydc is due to the excited triplet state acetone produced.
Previous fluorescence studies of horseradish peroxidase conjugated with protoporphyrin IX suggested that the protein behaved hydrodynamically as a prolate ellipsoid of axial ratio 3 to 1. The present study, designed to further investigate the hydrodynamics of this protein, exploits a series of probes, noncovalently bound to the heme binding site of apo-horseradish peroxidase, having different orientations of the excitation and emission transition dipoles with respect to the protein's rotational axes. The probes utilized included protoporphyrin IX and the naphthalene probes 1-anilino-8-naphthalene sulfonate, 2-p-toluidinyl-6-naphthalene sulfonate, and 4,4'-bis(1-anilino-8-naphthalene sulfonate). Time-resolved data were obtained using multifrequency phase fluorometry. The global analysis approach to the determination of molecular shape using multiple probes was evaluated by utilizing all data sets while maintaining a constant molecular shape for the protein. The results indicated that, in such analyses, probes exhibiting a single exponential decay and limited local motion have the major weight in the evaluation of the axial ratio. Probes that show complex decay patterns and local motions, such as the naphthalene derivatives, give rise to significant uncertainties in such global treatments. By explicitly accounting for the effect of such local motion, however, the shape of the protein can be reliably recovered.
The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5-1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems.
The environmentally sensitive fluorescent probes 6-propionyl-2-(N,N-dimethylamino)naphthalene (PRODAN) and 2'-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanioc acid (DANCA) form complexes with the heme binding site of apohorseradish peroxidase. The dissociation constants of the PRODAN and DANCA complexes were determined from anisotropy titration data to be approximately 8.7 x 10(-5) and 3.3 x 10(-4) M, respectively. From comparison of the steady state fluorescence spectra of PRODAN and DANCA in solvents of varying dielectric constants, and in the apohorseradish peroxidase complex, we conclude that the heme binding site of horseradish peroxidase is relatively polar. The lifetimes of PRODAN and DANCA in organic solvents of varying polarities can be fit to single exponential decays. However, the lifetimes of PRODAN and DANCA associated with apohorseradish peroxidase, determined using a background subtraction method to correct for the non-negligible fluorescence of unbound probe, fit best to a distribution of lifetime values. We attribute these lifetime distributions to microenvironmental heterogeneity which is also consistent with the observed dependence of the emission maxima of PRODAN-apohorseradish peroxidase upon the excitation wavelength. In neither the PRODAN nor the DANCA case was evidence found in the time-resolved data for relaxation of the protein matrix around the excited state probe dipole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.