Intradermal (ID) immunization is an attractive route of vaccination because it targets tissue rich in dendritic cells, has dose-sparing potential, and allows needle-free delivery. However, few adjuvants are effective, nonreactogenic, and compatible with needle-free delivery devices. In this study, we demonstrate that a combination adjuvant composed of cyclic-di-AMP (cdAMP) and the plant-derived nanoparticle adjuvant Nano-11 significantly enhanced the immune response to ID-injected vaccines in mice and pigs with minimal local reaction at the injection site. The cdAMP/Nano-11 combination adjuvant increased Ag uptake by lymph node–resident and migratory skin dendritic cell subpopulations, including Langerhans cells. ID immunization with cdAMP/Nano-11 expanded the population of germinal center B cells and follicular helper T cells in the draining lymph node and Ag-specific Th1 and Th17 cells in the spleen. It elicited an enhanced immune response with a significant increase of IgG1 and IgG2a responses in mice at a reduced dose compared with i.m. immunization. An increased IgG response was observed following needle-free ID immunization of pigs. Nano-11 and cdAMP demonstrated a strong synergistic interaction, as shown in the activation of mouse, human, and porcine APC, with increased expression of costimulatory molecules and secretion of TNF and IL-1β. The combination adjuvant induced robust activation of both NF-κB and IFN regulatory factor signaling pathways and the NLRP3 inflammasome. We conclude that the combination of Nano-11 and cdAMP is a promising adjuvant for ID delivery of vaccines that supports a balanced immune response.
Invasive Candida albicans (CA) infections often arise from the intestine and cause life-threatening infections in immunocompromised individuals. The role of gut commensal microbiota, metabolites, and host factors in the regulation of CA colonization in the intestine is poorly understood. Previous findings from our lab indicate that taurocholic acid (TCA), a major bile acid present in the intestine, promotes CA colonization and dissemination. Here, we report that oral administration of TCA to CA-infected mice significantly decreased the number of mononuclear phagocytes and CD4+ IL17A+ T helper 17 cells that play a critical role in controlling CA in the intestine. Collectively, our results indicate that TCA modulates mucosal innate and adaptive immune responses to promote CA colonization in the intestine.
Nanoparticles (NPs) are increasingly used as efficient vaccine antigen-delivery platforms and vaccine adjuvants. Alpha (α)-D-glucans are polysaccharide polymers found in plants, animals, and microbes. Phytoglycogen (PG) is a densely branched dendrimer-like α-D-glucan that forms nanoparticle structures. Two simple chemical modifications of corn-derived PG create positively charged, amphiphilic nanoparticles, known as Nano-11, that stimulate immune responses when used as vaccine adjuvant in a variety of species. Nano-11 is a versatile adjuvant that can be used for alternative routes of vaccination and in combination with other immunostimulatory molecules. This review discusses our current understanding of the mechanism of action of Nano-11 and its future potential applications in animal vaccines.
It is necessary for the dairy industry to reduce calf morbidity and mortality, and the reliance on antibiotics to treat sick calves, to address the growing concern regarding antibiotic resistant bacteria. The primary objective of this study was to evaluate the effect that feeding dairy calves medium-chain fatty acids (MCFA) has on growth performance and health, and the secondary objective was to evaluate the effect of MCFA on energy status around weaning and the adaptive immune response following a vaccine challenge. Thirty-three Holstein bull calves (5 ± 1.6 d of age) were randomly assigned to 1 of 2 treatments. Control (CON) calves were fed milk replacer with no C8:0 or C10:0 oil added and MCFA calves were fed milk replacer with 0.5% of a combination of C8:0 or C10:0 oil added. Body weight and average daily gain were measured weekly. Feed efficiency (gain/feed) and the change in body condition score, hip width, hip height, heart girth, and paunch girth were calculated for the duration of the study. Fecal scores were recorded daily and all medical treatments were documented for the duration of the trial. On d 42, 49, and 56 of the study, a serum sample was collected from each calf and used to measure nonesterified fatty acids, β-hydroxybutyric acid, insulin, and glucose concentrations to evaluate energy status around weaning. A subset of 11 calves per treatment were enrolled in a vaccine challenge. At 21 ± 1.9 d of age (mean ± standard deviation) calves were vaccinated intramuscularly with 1 mL of endotoxin-free ovalbumin (OVA) mixed with aluminum hydroxide adjuvant. At 42 d of age (±1.9 d), blood samples were collected and used to analyze OVA-specific IgG 1 and IgG 2 , and calves were vaccinated a second time. At 56 d of age (±1.9 d), blood samples were collected to analyze IgG 1 and IgG 2 as well as IFN-γ and IL-4 secreted from pe-ripheral blood mononuclear cells (PBMC) treated with OVA or phytohemagglutinin. Data were analyzed as a completely randomized design with repeated measures when applicable. A tendency for greater daily fecal score was observed for MCFA calves compared with CON. At d 42 of the study, nonesterified fatty acid concentrations were greater in CON calves compared with MCFA. At 42 and 56 d of age, anti-OVA IgG 1 concentrations for CON and MCFA calves were greater than prevaccination samples. This study suggests that feeding MCFA to calves affects the energy status of calves around weaning and vaccinating dairy calves with ovalbumin combined with an aluminum hydroxide adjuvant is an effective way to evaluate the adaptive immune responses.
Background Swine influenza A viruses (SwIAVs) pose an economic and pandemic threat, and development of novel effective vaccines is of critical significance. We evaluated the performance of split swine influenza A virus (SwIAV) H1N2 antigens with a plant-derived nanoparticle adjuvant alone (Nano-11) [Nano11-SwIAV] or in combination with the synthetic stimulator of interferon genes (STING) agonist ADU-S100 (NanoS100-SwIAV). Specific pathogen free (SPF) pigs were vaccinated twice via intramuscular (IM) or intradermal (ID) routes and challenged with a virulent heterologous SwIAV H1N1-OH7 virus. Results Animals vaccinated IM or ID with NanoS100-SwIAV had significantly increased cross-reactive IgG and IgA titers in serum, nasal secretion and bronchoalveolar lavage fluid at day post challenge 6 (DPC6). Furthermore, NanoS100-SwIAV ID vaccinates, even at half the vaccine dose compared to their IM vaccinated counterparts, had significantly increased frequencies of CXCL10+ myeloid cells in the tracheobronchial lymph nodes (TBLN), and IFNγ+ effector memory T-helper/memory cells, IL-17A+ total T-helper/memory cells, central and effector memory T-helper/memory cells, IL-17A+ total cytotoxic T-lymphocytes (CTLs), and early effector CTLs in blood compared with the Nano11-SwIAV group demonstrating a potential dose-sparing effect and induction of a strong IL-17A+ T-helper/memory (Th17) response in the periphery. However, the frequencies of IFNγ+ late effector CTLs and effector memory T-helper/memory cells, IL-17A+ total CTLs, late effector CTLs, and CXCL10+ myeloid cells in blood, as well as lung CXCL10+ plasmacytoid dendritic cells were increased in NanoS100-SwIAV IM vaccinated pigs. Increased expression of IL-4 and IL-6 mRNA was observed in TBLN of Nano-11 based IM vaccinates following challenge. Furthermore, the challenge virus load in the lungs and nasal passage was undetectable in NanoS100-SwIAV IM vaccinates by DPC6 along with reduced macroscopic lung lesions and significantly higher virus neutralization titers in lungs at DPC6. However, NanoS100-SwIAV ID vaccinates exhibited significant reduction of challenge virus titers in nasal passages and a remarkable reduction of challenge virus in lungs. Conclusions Despite vast genetic difference (77% HA gene identity) between the H1N2 and H1N1 SwIAV, the NanoS100 adjuvanted vaccine elicited cross protective cell mediated immune responses, suggesting the potential role of this combination adjuvant in inducing cross-protective immunity in pigs. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.