Introducción-Al conducir, la persona se encuentra expuesta a diferentes estímulos que pueden llevar a que se ocasione accidentes. Aunque Numerosas propuestas tecnológicas se han presentado para mantener monitoreado al conductor, estas han pasado por alto el estado anímico en el que este se encuentra, el cual podría generar efectos negativos en la capacidad de reacción al conducir. Objetivo- Buscar diferentes alternativas de inteligencia artificial para el análisis permanente de rostros de conductores, con el fin de encontrar un buen modelo de clasificación de expresión facial (feliz, enojo, sorpresa, neutral). Metodología- La metodología utilizada consiste en la selección de una base de datos que es preprocesada, para posteriormente entrenar diferentes modelos y realizar comparaciones de precisión entre ellos. Resultados- Se logra encontrar una precisión mayor al 80% en la detección del estado anímico del usuario. Y se logra migrar el modelo a un sistema de monitoreo portátil. Conclusiones- En este caso particular los métodos de aprendizaje de maquina tradicionales (machine learning) consumen menos tiempo a la hora de clasificar, sin embargo, estos son superados en precisión por un aprendizaje profundo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.