This research aimed at investigating circadian rhythm expression of key genes involved in lipid metabolism in the liver of a teleost fish (Sparus aurata), and their synchronisation to different light-dark (L-D) and feeding cycles. To this end, 90 gilthead sea bream were kept in 12:12 h (light:dark, LD, lights on at ZT0) and fed a single daily meal at mid-light (ML = ZT6), mid-darkness (MD = ZT18) and randomly (RD) at a 1.5% body weight ration. A total of 18 tanks were used, six tanks per feeding treatment with five fishes per tank; locomotor activity was recorded in each tank. After 25 days of synchronisation to these feeding regimes, fishes were fasted for one day and liver samples were taken every 4 hours during a 24 h cycle (ZT2, 6, 10, 14, 18 and 22) and stored at -80 °C until analysis. To determine whether the rhythm expression presented an endogenous control, another experiment was performed using 30 fish kept in complete darkness and fed randomly (DD/RD). Samples were taken following the same procedure as above. The results revealed that all genes investigated exhibited well defined daily rhythms. The lipolysis-related and fatty acid turnover genes (hormone-sensitive lipase (hsl) and peroxisome proliferator-activated receptor-α (pparα)) exhibited a nocturnal achrophase (Ø = ZT18:03-19:21); lipoprotein lipase (lpl) also showed the same nocturnal achrophase (Ø = ZT20:04-21:36). In contrast, lipogenesis-related gene, fatty acid synthase (fas), and of fatty acid turnover, cyclooxygenase (cox-2), showed a diurnal rhythm (Ø = ZT2:27-8:09); while pparγ was nocturnal (Ø = ZT16:16-18:05). Curiously, feeding time had little influence on the phase of these daily rhythms, since all feeding groups displayed similar achrophases. Furthermore, under constant conditions pparα and hsl showed circadian rhythmicity. These findings suggest that lipid utilisation in the liver is rhythmic and strongly synchronised to the LD cycle, regardless of feeding time, which should be taken into consideration when investigating fish nutrition and the design of feeding protocols.
Despite numerous studies about fish nutrition and lipid metabolism, very little is known about the daily rhythm expression of lipogenesis and lipolysis genes. This research aimed to investigate the existence of daily rhythm expressions of the genes involved in lipid metabolism and their synchronization to different light/dark (LD) and feeding cycles in zebra fish liver. For this purpose, three groups of zebra fish were submitted to a 12:12 h LD cycle. A single daily meal was provided to each group at various times: in the middle of the light phase (ML); in the middle of the dark phase (MD); at random times. After 20 days of acclimation to these experimental conditions, liver samples were collected every 4 h in one 24-h cycle. The results revealed that most genes displayed a significant daily rhythm with an acrophase of expression in the dark phase. The acrophase of lipolytic genes (lipoprotein lipase - lpl, peroxisome proliferator-activated receptor - pparα and hydroxyacil CoA dehydrogenase - hadh) was displayed between ZT 02:17 h and ZT 18:31 h. That of lipogenic genes (leptin-a - lepa, peroxisome proliferator-activated receptor - pparγ, liver X receptor - lxr, insulin-like growth factor - igf1, sterol regulatory element-binding protein - srebp and fatty acid synthase - fas) was displayed between ZT 15:25 h and 20:06 h (dark phase). Feeding time barely influenced daily expression rhythms, except for lxr in the MD group, whose acrophase shifted by about 14 h compared with the ML group (ZT 04:31 h versus ZT 18:29 h, respectively). These results evidence a strong synchronization to the LD cycle, but not to feeding time, and most genes showed a nocturnal acrophase. These findings highlight the importance of considering light and feeding time to optimize lipid metabolism and feeding protocols in fish farming.
Ethanol is one of the most commonly abused drugs and consequently its toxic and psychoactive effect has been widely investigated, although little is known about the time-dependent effects of this drug. In the present research zebrafish was used to assess daily rhythms in ethanol toxicity and behavioural effects, as well as the temporal pattern of expression of key genes involved in ethanol detoxification in the liver (adh8a, adh5, aldh2.1 and aldh2.2). Our results showed marked differences in the mortality rate of zebrafish larvae depending on the time of day of the exposure to 5% ethanol for 1h (82% and 6% mortality in the morning and at night, respectively). A significant daily rhythm was detected with the acrophase located at “zeitgeber” time (ZT) = 04:22 h. Behavioural tests exposing zebrafish to 1% ethanol provoked a major decrease in swimming activity (68–84.2% reduction) at ZT2, ZT6 and ZT10. In contrast, exposure at ZT18 stimulated swimming activity (27% increase). During the day fish moved towards the bottom of the tank during ethanol exposure, whereas at night zebrafish increased their activity levels right after the exposure to ethanol. Genes involved in ethanol detoxification failed to show significant daily rhythms in LD, although all of them exhibited circadian regulation in constant darkness (DD) with acrophases in phase and located at the end of the subjective night. Taken altogether, this research revealed the importance of considering the time of day when designing and carrying out toxicological and behavioural tests to investigate the effects of ethanol, as the adverse effects of this drug were more marked when fish were exposed in the morning than at night.
This research aimed at investigating the light synchronization and endogenous origin of daily expression rhythms of eight key genes involved in epigenetic mechanisms (DNA methylation and demethylation) in zebrafish gonads. To this end, 84 zebrafish were distributed into six tanks, each one containing 14 fish (7 males and 7 females). Animals were subjected to 12 h light:12 h dark cycles (LD, lights on at ZT0 h) and fed randomly three times a day during the light phase. Locomotor activity rhythms were recorded in each tank for 20 days to test their synchronization to light. Then, zebrafish were fasted for one day and gonad samples were collected every 4 h during a 24 h cycle (ZT2, 6, 10, 14, 18, and 22 h). The results revealed that most of the epigenetic genes investigated exhibited a significant daily rhythm. DNA methylation genes (dnmt4, dnmt5, dnmt7) exhibited a daily rhythm of expression with a nocturnal acrophase (ZT14:01~ZT22:17 h), except for dnmt7 in males (ZT2:25 h). Similarly, all DNA demethylation genes (tet2, tdg, mb4, gadd45aa, and apobec2b) revealed the existence of statistically significant daily rhythms, except for gadd45aa in females. In females, tdg, mb4, and apobec2b presented a nocturnal peak (ZT14:20 ~ ZT22:04 h), whereas the tet2 acrophase was diurnal (ZT4:02 h). In males, tet2, tdg, and gadd45aa had nocturnal acrophases (ZT18:26~ZT21:31 h), whereas mb4 and apobec2b displayed diurnal acrophases (ZT5:28 and ZT4:02 h, respectively). To determine the endogenous nature of gene expression rhythms, another experiment was performed: 12 groups of 14 fish (7 males and 7 females) were kept in complete darkness (DD) and sampled every 4 h during a 48 h cycle (CT2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46 h). Under DD, most of the genes (7 out of 8) presented circadian rhythmicity with different endogenous periodicities (tau), suggesting that the epigenetic mechanisms of DNA methylation and demethylation in the gonads follow an internal control, functioning as part of the translation network linking the environment into somatic signals in fish reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.