Background and aims: Vitamin D inadequacy may be involved in the mechanisms of SARS-CoV-2 infection and in potential risk factors for disease propagation or control of coronavirus disease 2019 (COVID-19). This study assessed a short-term evolution of vitamin D status and its influence upon different clinical parameters in critically ill patients with COVID-19. Methods: A prospective analytical study in which 37 critically ill volunteers between 41 and 71 years of age with COVID-19 were evaluated at baseline and three days of intensive care unit (ICU) stay. 25-OH-D3 and 25-OH-D2 were analyzed by liquid chromatography–tandem mass spectrometry and total 25-OH-D levels were calculated as the sum of both. Results: All patients presented low 25-OH-D levels at baseline, decreasing total 25-OH-D (p = 0.011) mainly through 25-OH-D2 (p = 0.006) levels during ICU stay. 25-OH-D2 levels decreased a mean of 41.6% ± 89.6% versus 7.0% ± 23.4% for the 25-OH-D3 form during the ICU stay. Patients who did not need invasive mechanical ventilation presented higher levels of 25-OH-D2 at baseline and follow-up. Lower 25-OH-D and 25-OH-D3 levels were associated with higher D-dimer at baseline (p = 0.003; p = 0.001) and at follow up (p = 0.029), higher procalcitonin levels (p = 0.002; p = 0.018) at follow up, and lower percentage lymphocyte counts (p = 0.044; p = 0.040) during ICU stay. Conclusions: Deficient vitamin D status in critical patients was established at the admission and further worsened after three days of stay. Lower vitamin D levels were related to key altered clinical and biochemical parameters on patients with SARS-CoV-2 infection. Given the different response of the 25-OH-D3 and 25-OH-D2 forms, it would be useful to monitor them on the evolution of the critically ill patient.
Características y resultados de una serie de 59 pacientes con neumonía grave por COVID-19 ingresados en UCI Characteristics and results of a series of 59 patients with severe pneumonia due to COVID-19 admitted in the ICU
This study evaluated the clinical and nutritional status, the evolution over three days, and the relationship between nutritional, inflammatory, and clinical parameters of critically ill patients with COVID-19. A longitudinal study was conducted in the Intensive Care Unit of the Virgen de las Nieves University Hospital in Granada (Spain). The study population comprised patients with a positive polymerase chain reaction test for COVID-19 presenting critical clinical involvement. Clinical outcomes were collected, and inflammatory and nutritional parameters (albumin, prealbumin, transferrin, transferrin saturation index, cholesterol, triglycerides and Controlling Nutritional Status (CONUT) score) were determined. A total of 202 critical patients with COVID-19 were selected, presenting highly altered clinical-nutritional parameters. The evolution experienced by the patients on the third day of admission was a decrease in albumin (p < 0.001) and an increase in prealbumin (p < 0.001), transferrin (p < 0.002), transferrin saturation index (p < 0.018), and cholesterol (p < 0.001). Low levels of albumin, prealbumin (on the third day) and high CONUT score (on the third day) showed an association with higher mortality. Nutritional variables were inversely correlated with clinical and inflammatory parameters. Critically ill patients with COVID-19 have poor nutritional status related to a poor prognosis of disease severity and mortality.
Administering N-acetylcysteine (NAC) could counteract the effect of free radicals, improving the clinical evolution of patients admitted to the Intensive Care Unit (ICU). This study aimed to investigate the clinical and biochemical effects of administering NAC to critically ill patients with COVID-19. A randomized controlled clinical trial was conducted on ICU patients (n = 140) with COVID-19 and divided into two groups: patients treated with NAC (NAC-treated group) and patients without NAC treatment (control group). NAC was administered as a continuous infusion with a loading dose and a maintenance dose during the study period (from admission until the third day of ICU stay). NAC-treated patients showed higher PaO2/FiO2 (p ≤ 0.014) after 3 days in ICU than their control group counterparts. Moreover, C-reactive protein (p ≤ 0.001), D-dimer (p ≤ 0.042), and lactate dehydrogenase (p ≤ 0.001) levels decreased on the third day in NAC-treated patients. Glutathione concentrations decreased in both NAC-treated (p ≤ 0.004) and control (p ≤ 0.047) groups after 3 days in ICU; whereas glutathione peroxidase did not change during the ICU stay. The administration of NAC manages to improve the clinical and analytical response of seriously ill patients with COVID-19 compared to the control group. NAC is able to stop the decrease in glutathione concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.