Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time consuming for such high dimensional data sets and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, nondestructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task.
Artificial vision systems are powerful tools for the automatic inspection of fruits and vegetables. Typical target applications of such systems include grading, quality estimation from external parameters or internal features, monitoring of fruit processes during storage or evaluation of experimental treatments. The capabilities of an artificial vision system go beyond the limited human capacity to evaluate long-term processes objectively or to appreciate events that take place outside the visible electromagnetic spectrum. Use of the ultraviolet or near-infrared spectra makes it possible to explore defects or features that the human eye is unable to see. Hyperspectral systems provide information about individual components or damage that can be perceived only at particular wavelengths and can be used as a tool to develop new computer vision systems adapted to particular objectives. In-line grading systems allow huge amounts of fruit or vegetables to be inspected individually and provide statistics about the batch. In general, artificial systems not only substitute human inspection but also improve on its capabilities. This work presents the latest developments in the application of this technology to the inspection of the internal and external quality of fruits and vegetables.
The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap; and presents high generalization capabilities. Bayesian ELM is benchmarked against classical ELM in several artificial and real datasets that are widely used for the evaluation of machine learning algorithms. Achieved results show that the proposed approach produces a competitive accuracy with some additional advantages, namely, automatic production of CIs, reduction of probability of model overfitting, and use of a priori knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.