Vaccination faces many challenges nowadays, and among them the use of adjuvant molecules and needle-free administration are some of the most demanding. The combination of transcutaneous vaccination and nanomedicine through a rationally designed new-formulation could be the solution to this problem. This study focuses on this rational design. For this purpose, new hyaluronic acid nanocapsules (HA-NCs) have been developed. This new formulation has an oily nucleus with immunoadjuvant properties (due to α tocopherol) and a shell made of hyaluronic acid (HA) and decorated with ovalbumin (OVA) as the model antigen. The resulting nanocapsules are smaller than 100 nm, have a negative superficial charge and have a population that is homogeneously distributed. The systems show high colloidal stability in storage and physiological conditions and high OVA association without losing their integrity. The elevated interaction of the novel formulation with the immune system was demonstrated through complement activation and macrophage viability studies. Ex vivo studies using a pig skin model show the ability of these novel nanocapsules to penetrate and retain OVA in higher quantities in skin when compared to this antigen in the control solution. Due to these findings, HA-NCs are an interesting platform for needle-free vaccination.
Transcutaneous vaccination has several advantages including having a noninvasive route and needle-free administration; nonetheless developing an effective transdermal formulation has not been an easy task because skin physiology, particularly the stratum corneum, does not allow antigen penetration. Size is a crucial parameter for successful active molecule administration through the skin. Here we report a new core-shell structure rationally developed for transcutaneous antigen delivery. The resulting multifunctional carrier has an oily core with immune adjuvant properties and a polymeric corona made of chitosan. This system has a size of around 100 nm and a positive zeta potential. The new formulation is stable in storage and physiological conditions. Ovalbumin (OVA) was used as the antigen model and the developed nanocapsules show high association efficiency (75%). Chitosan nanocapsules have high interaction with the immune system which was demonstrated by complement activation and also did not affect cell viability in the macrophage cell line. Finally, ex vivo studies using a pig skin model show that OVA associated to the chitosan nanocapsules developed in this study penetrated and were retained better than OVA in solution. Thus, the physicochemical properties and their adequate characteristics make this carrier an excellent platform for transcutaneous antigen delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.