In this paper, we present a predictive control algorithm that uses a state-space model. Based on classical control theory, an exact discrete-time model of an induction machine with time-varying components is developed improving the accuracy of state prediction. A torque and stator flux magnitude control algorithm evaluates a cost function for each switching state available in a two-level inverter. The voltage vector with the lowest torque and stator flux magnitude errors is selected to be applied in the next sampling interval. A high degree of flexibility is obtained with the proposed control technique due to the online optimization algorithm, where system nonlinearities and restrictions can be included. Experimental results for a 4-kW induction machine are presented to validate the proposed state-space model and control algorithm.
Models for deterministic continuous-time nonlinear systems typically take the form of ordinary differential equations. To utilize these models in practice invariably requires discretization. In this paper, we show how an approximate sampled-data model can be obtained for deterministic nonlinear systems such that the local truncation error between the output of this model and the true system is of order 1 +1 , where 1 is the sampling period and is the system relative degree. The resulting model includes extra zero dynamics which have no counterpart in the underlying continuous-time system. The ideas presented here generalize well-known results for the linear case. We also explore the implications of these results in nonlinear system identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.