The clinical benefit conferred by vascular endothelial growth factors (VEGF)-targeted therapies is variable, and tumors from treated patients eventually reinitiate growth. Here, we identify a glycosylation-dependent pathway that compensates for the absence of cognate ligand and preserves angiogenesis in response to VEGF blockade. Remodeling of the endothelial cell (EC) surface glycome selectively regulated binding of galectin-1 (Gal1), which upon recognition of complex N-glycans on VEGFR2, activated VEGF-like signaling. Vessels within anti-VEGF-sensitive tumors exhibited high levels of α2-6-linked sialic acid, which prevented Gal1 binding. In contrast, anti-VEGF refractory tumors secreted increased Gal1 and their associated vasculature displayed glycosylation patterns that facilitated Gal1-EC interactions. Interruption of β1-6GlcNAc branching in ECs or silencing of tumor-derived Gal1 converted refractory into anti-VEGF-sensitive tumors, whereas elimination of α2-6-linked sialic acid conferred resistance to anti-VEGF. Disruption of the Gal1-N-glycan axis promoted vascular remodeling, immune cell influx and tumor growth inhibition. Thus, targeting glycosylation-dependent lectin-receptor interactions may increase the efficacy of anti-VEGF treatment.
All mammalian cells release small endosome-derived exosomes that function in intercellular communication, but the secretion process is poorly understood. Verweij et al. developed a live-imaging approach and demonstrate that external cues can trigger exosome release from a subpopulation of multivesicular bodies by phosphorylating the target membrane SNARE SNAP23 at serine residue 110.
In recent years, many paradigms concerning central nervous system (CNS) immunology have been challenged and shifted, including the discovery of CNS-draining lymphatic vessels, the origin and functional diversity of microglia, the impact of T cells on CNS immunological homeostasis and the role of neuroinflammation in neurodegenerative diseases. In parallel, antigen presentation outside the CNS has revealed the vital role of antigen-presenting cells in maintaining tolerance toward self-proteins, thwarting auto-immunity. Here, we review recent findings that unite these shifted paradigms of microglial functioning, antigen presentation, and CNS-directed T cell activation, focusing on common neurodegenerative diseases. It provides an important update on CNS adaptive immunity, novel targets, and a concept of the microglia T-cell equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.