This work presents a method to produce structural composites capable of energy storage. They are produced by integrating thin sandwich structures of CNT fiber veils and an ionic liquid-based polymer electrolyte between carbon fiber plies, followed by infusion and curing of an epoxy resin. The resulting structure behaves simultaneously as an electric double-layer capacitor and a structural composite, with flexural modulus of 60 GPa and flexural strength of 153 MPa, combined with 88 mF/g of specific capacitance and the highest power (30 W/kg) and energy (37.5 mWh/kg) densities reported so far for structural supercapacitors. In-situ electrochemical measurements during 4-point bending show that electrochemical performance is retained up to fracture, with minor changes in equivalent series resistance for interleaves under compressive stress. En route to improving interlaminar properties we produce grid-shaped interleaves that enable mechanical interconnection of plies by the stiff epoxy. Synchrotron 3D X-ray tomography analysis of the resulting hierarchical structure confirms the formation of interlaminar epoxy joints. The manuscript discusses encapsulation role of epoxy, demonstrated by charge-discharge measurements of composites immersed in water, a deleterious agent for ionic liquids. Finally, we show different architectures free of current collector and electrical insulators, in which both CNT fiber and CF act as active electrodes.
To achieve a good clinical outcome in radiotherapy treatment, a certain accuracy in the dose delivered to the patient is required. Therefore, it is necessary to keep the uncertainty in each of the steps of the process inside some acceptable values, which implies as low a global uncertainty as possible. The work reported here focused on the uncertainty evaluation of absorbed dose to water in the routine calibration for clinical beams in the range of energies used in external‐beam radiotherapy. With this aim, we considered various uncertainty components (corrected electrometer reading, calibration factor, beam quality correction factor, and reference conditions) associated with beam calibration. Results show a typical uncertainty in the determination of absorbed dose to water during beam calibration of approximately 1.3% for photon beams and 1.5% for electron beams (k=1 in both cases) when the ND,w formalism is used and kQ,Q0 is calculated theoretically. These values may vary depending on the uncertainty provided by the standards laboratory for calibration factor, which is shown in the work. For primary standards based on clinical linear accelerator beam energies, the uncertainty in this step of the process could be placed close to 1.0%. We also discuss the possibility of an uncertainty reduction with the adoption of the absorbed dose to water formalism as compared with the air kerma formalism.PACS numbers: 87.53.Dq, 87.53.Hv
Summary
Little is known about the role of hepatitis C virus (HCV) infection in the development of tuberculosis (TB) in patients with immunosuppression. We performed a retrospective case–control study (1:4) to investigate by univariate and multivariate logistic regression analysis the importance of HCV infection in the development of TB in a cohort of kidney transplant recipients (KTR). TB was diagnosed in 16 out of 2012 (0.8%) KTR between 1976 and 2004. The percentage of HCV‐positive patients was significantly higher in cases than in controls (56.3% vs. 18.8%; P = 0.02). By multivariate analysis, the only two independent risk factors associated with the development of TB were the presence of HCV infection (P = 0.003; OR = 6.5; 95% CI 1.9–23) and serum creatinine over 1.5 mg/dl (P = 0.03; OR = 4.8; 95% CI 1.1–21). HCV infection and chronic graft dysfunction are important risks factors for TB in KTR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.