We present a method for obtaining the phase of a noisy simulated interferogram. We find the wave-front aberrations by transforming the problem of fitting a polynomial into an optimization problem, which is then solved using an evolutionary algorithm. Our experimental results show that our method yields a more accurate solution than other methods commonly used to solve this problem.
Abstract. This paper describes the use of a hybrid evolutionary optimization algorithm (HEOA) for computing the wavefront aberration from real interferometric data. By finding the near-optimal solution to an optimization problem, this algorithm calculates the Zernike polynomial expansion coefficients from a Fizeau interferogram, showing the validity for the reconstruction of the wavefront aberration. The proposed HEOA incorporates the advantages of both a multimember evolution strategy and locally weighted linear regression in order to minimize an objective function while avoiding premature convergence to a local minimum. The numerical results demonstrate that our HEOA is robust for analyzing real interferograms degraded by noise. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Latent Semantic Analysis (LSA) is a method that allows us to automatically index and retrieve information from a set of objects by reducing the term-by-document matrix using the Singular Value Decomposition (SVD) technique. However, LSA has a high computational cost for analyzing large amounts of information. The goals of this work are (i) to improve the execution time of semantic space construction, dimensionality reduction, and information retrieval stages of LSA based on heterogeneous systems and (ii) to evaluate the accuracy and recall of the information retrieval stage. We present a heterogeneous Latent Semantic Analysis (hLSA) system, which has been developed using General-Purpose computing on Graphics Processing Units (GPGPUs) architecture, which can solve large numeric problems faster through the thousands of concurrent threads on multiple CUDA cores of GPUs and multi-CPU architecture, which can solve large text problems faster through a multiprocessing environment. We execute the hLSA system with documents from the PubMed Central (PMC) database. The results of the experiments show that the acceleration reached by the hLSA system for large matrices with one hundred and fifty thousand million values is around eight times faster than the standard LSA version with an accuracy of 88% and a recall of 100%.
Many living organisms have DNA in their cells that is responsible for their biological features. DNA is an organic molecule of two complementary strands of four different nucleotides wound up in a double helix. These nucleotides are adenine (A), thymine (T), guanine (G), and cytosine (C). Genes are DNA sequences containing the information to synthesize proteins. The genes of higher eukaryotic organisms contain coding sequences, known as exons and non-coding sequences, known as introns, which are removed on splice sites after the DNA is transcribed into RNA. Genome annotation is the process of identifying the location of coding regions and determining their function. This process is fundamental for understanding gene structure; however, it is time-consuming and expensive when done by biochemical methods. With technological advances, splice site detection can be done computationally. Although various software tools have been developed to predict splice sites, they need to improve accuracy and reduce false-positive rates. The main goal of this research was to generate Deep Splicer, a deep learning model to identify splice sites in the genomes of humans and other species. This model has good performance metrics and a lower false-positive rate than the currently existing tools. Deep Splicer achieved an accuracy between 93.55% and 99.66% on the genetic sequences of different organisms, while Splice2Deep, another splice site detection tool, had an accuracy between 90.52% and 98.08%. Splice2Deep surpassed Deep Splicer on the accuracy obtained after evaluating C. elegans genomic sequences (97.88% vs. 93.62%) and A. thaliana (95.40% vs. 94.93%); however, Deep Splicer’s accuracy was better for H. sapiens (98.94% vs. 97.15%) and D. melanogaster (97.14% vs. 92.30%). The rate of false positives was 0.11% for human genetic sequences and 0.25% for other species’ genetic sequences. Another splice prediction tool, Splice Finder, had between 1% and 3% of false positives for human sequences, while other species’ sequences had around 4% and 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.