In the Big Data era, both the academic community and industry agree that a crucial point to obtain the maximum benefits from the explosive data growth is integrating information from different sources, and also combining methodologies to analyze and process it. For this reason, sharing data so that third parties can build new applications or services based on it is nowadays a trend. Although most data sharing initiatives are based on public data, the ability to reuse data generated by private companies is starting to gain importance as some of them (such as Google, Twitter, BBC or New York Times) are providing access to part of their data. However, current solutions for sharing data with third parties are not fully convenient to either or both data owners and data consumers. Therefore we present dataClay, a distributed data store designed to share data with external players in a secure and flexible way based on the concepts of identity and encapsulation. We also prove that dataClay is comparable in terms of performance with trendy NoSQL technologies while providing extra functionality, and resolves impedance mismatch issues based on the Object Oriented paradigm for data representation.This work has been supported by the Spanish Government (grant SEV2015-0493 of the Severo Ochoa Program), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316) and by Generalitat de Catalunya (contract 2014-SGR-1051). Special thanks go to Dr. Oscar Romero (Universitat Politècnica de Catalunya) for providing helpful feedback on the paper.Peer ReviewedPostprint (published version
Cyberattacks in the Internet of Things (IoT) are growing exponentially, especially zero-day attacks mostly driven by security weaknesses on IoT networks. Traditional intrusion detection systems (IDSs) adopted machine learning (ML), especially deep Learning (DL), to improve the detection of cyberattacks. DL-based IDSs require balanced datasets with large amounts of labeled data; however, there is a lack of such large collections in IoT networks. This paper proposes an efficient intrusion detection framework based on transfer learning (TL), knowledge transfer, and model refinement, for the effective detection of zero-day attacks. The framework is tailored to 5G IoT scenarios with unbalanced and scarce labeled datasets. The TL model is based on convolutional neural networks (CNNs). The framework was evaluated to detect a wide range of zero-day attacks. To this end, three specialized datasets were created. Experimental results show that the proposed TL-based framework achieves high accuracy and low false prediction rate (FPR). The proposed solution has better detection rates for the different families of known and zero-day attacks than any previous DL-based IDS. These results demonstrate that TL is effective in the detection of cyberattacks in IoT environments.
OpenMP has been focused in performance applied to numerical applications, but when we try to move this focus to other kind of applications, like Web servers, we detect one important lack. In these applications, performance is important, but reliability is even more important, and OpenMP does not have any recovery mechanism. In this paper we present a novel proposal to address this lack. In order to add error handling to OpenMP we propose some extensions to the current OpenMP specification. A directive and a clause are proposed, defining a scope for the error handling (where the error can occur) and specifying a behaviour for handling the specific errors. Some examples of use are presented, and we present also an evaluation showing the impact of this proposal in OpenMP applications. We show that this impact is low enough to consider the proposal worthwhile for OpenMP.
Unmanned aerial vehicles (UAVs) are widely deployed in air navigation, where numerous applications use them for safety-of-life and positioning, navigation, and timing tasks. Consequently, GPS spoofing attacks are more and more frequent. The aim of this work is to enhance GPS systems of UAVs, by providing the ability of detecting and preventing spoofing attacks. The proposed solution is based on a multilayer perceptron neural network, which processes the flight parameters and the GPS signals to generate alarms signalling GPS spoofing attacks. The obtained accuracy lies between 83.23% for TEXBAT dataset and 99.93% for MAVLINK dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.