Objective: To evaluate the body fat distribution and fat cell size and number in an overweight/obese population from both genders, and to determine the possible relationship between fat cell data from three different adipose tissue localizations (subcutaneous (SA), perivisceral and omental) and adipose tissue composition and dietary fatty acid. Design: The sample consisted of 84 overweight/obese patients (29 men and 55 women) who have undergone abdominal surgery. The adipocyte size and total fat cell number was studied. Fat cell data were related with anthropometric, adipose tissue and subject's habitual diet fatty acid composition. Measurements: Fat cell size was measured according to a Sjöström method from the three adipose depots. Total fat cell number was also calculated. The fatty acid composition of adipose tissue was examined by gas chromatography. The subjects diet was studied by a 7 days dietary record. Results: Our data showed a negative relationship between the adipocyte size and the n-6 and n-3 fatty acids content of the SA adipose tissue (r ¼ À0.286, P ¼ 0,040; r ¼ À0.300, P ¼ 0.030) respectively, and the n-6 in the omental depots (r ¼ À0.407, P ¼ 0.049) in the total population. Positive associations with the total of saturated (r ¼ 0.357, P ¼ 0.045) and negative (r ¼ À0.544, P ¼ 0.001) with the n-9 fatty acids were observed when the relationship between the adipocyte number and the fatty acid composition of the different anatomical fat regions was studied. Dietary fatty acids composition positively correlated with fat cell size for the myristic acid (14:0) in men in the visceral depot (r ¼ 0.822, P ¼ 0.023), and for the saturated fatty acids (SFAs) in women in the omental depot (r ¼ 0.486, P ¼ 0.035). Conclusion: In the present study, for the first time in humans we found that n-3 and n-6 fatty acids are related to a reduced adipocyte size according to the depot localization. In contrast, adipose tissue and dietary SFAs sinificantly correlated with an increase in fat cell size and number. No significant associations were found between n-9 acids content and adipocyte size. However, n-9 adipose tissue fatty acids content was inversely associated with fat cell number showing that this type of fatty acid could limit hyperplasia in obese populations. The differences observed in the three different regions, perivisceral, omental and SA fat, indicate that this population adipose tissue have depot-specific differences.
Background: Clock genes play a role in adipose tissue (AT) in animal experimental models. However, it remains to be elucidated whether these genes are expressed in human AT. Objective: We investigated the expression of several clock genes, Bmal1, Per2 and Cry1, in human AT from visceral and subcutaneous abdominal depots. A second objective was to elucidate whether these clock genes expressions were related to the metabolic syndrome features. Methods: Visceral and subcutaneous AT samples were obtained from morbid obese men (n ¼ 8), age: 42713 years and body mass indexX40 kg/m 2 , undergoing laparoscopic surgery due to obesity. Biopsies were taken as paired samples at the beginning of the surgical process (1100 hour). Metabolic syndrome features such as waist circumference, plasma glucose, triglycerides, total cholesterol, high-density lipoprotein cholesterol and low-density lipoprotein (LDL) cholesterol were also studied. Homeostasis model assessment index of insulin resistance was also calculated. The expression of the different clock genes, hBmal1, hPer2 and hCry1, was determined by quantitative real-time PCR. Results: Clock genes were expressed in both human AT depots. hBmal1 expression was significantly lower than hPer2 and hCry1 in both AT (Po0.001). All genes were highly correlated to one another in the subcutaneous fat, while no correlation was found between Bmal1 and Per2 in the visceral AT. Clock genes AT expression was associated with the metabolic syndrome parameters: hPer2 expression level from visceral depot was inversely correlated to waist circumference (Po0.01), while the three clock genes studied were significantly and negatively correlated to total cholesterol and LDL cholesterol (Po0.01). Conclusion: We have demonstrated for the first time in humans that clock genes are expressed in both subcutaneous and visceral fat. Their association with abdominal fat content and cardiovascular risk factors may be an indicator of the potential role of these clock genes in the metabolic syndrome disturbances.
Objective: To discuss present knowledge about adiponectin hormone. Design: Review of existing literature. Setting and results: Adiponectin is one of the most interesting cytokines associated with obesity, although its physiological role remains to be fully clarified. Adiponectin is a 247-amino acid protein that contains four differentiable domains. Contrary to most adipose-related cytokines, adiponectin levels are surprisingly lower in obese than in lean humans. Women have been found to have significantly higher adiponectin plasma concentrations than men. Further research is needed in order to identify new polymorphisms which contribute to explain the potential role of adiponectin in obesity and related pathologies.Considering the anti-inflammatory properties of adiponectin and the fact that it is negatively associated with adiposity, this cytokine could be one of the links between obesity and inflammation. The main mechanisms of action of adiponectin are directed to a protective role against atherogenic and insulin resistance processes. Research has revealed interesting new functions far beyond metabolism, such as immunity, cancer and bone formation.Contrary to all adipose-related proteins, adiponectin decreases with obesity. Most of the contradictory data surrounding adiponectin are related to plasma values and their relationship with body fat, gender differences and insulin resistance. There are important confounding results regarding the mechanisms of action and functions of adiponectin, especially in relation to insulin resistance and inflammation.
To analyze in severely obese women the circadian expression of the clock genes hPer2, hBmal1, and hCry1 in explants from subcutaneous (SAT) and visceral (VAT) adipose tissue (AT), in order to elucidate whether this circadian clockwork can oscillate accurately and independently of the suprachiasmatic nucleus (SCN) and if glucocorticoid metabolism-related genes such as glucocorticoid receptor (hGr) and 11β-hydroxysteroid dehydrogenase 1 (h11β5Hsd1) and the transcription factor peroxisome proliferator activated receptor γ (hPPARγ) are part of the clock controlled genes. AT biopsies were obtained from morbid obese patients (BMI >40 kg/m2) (n = 7). Anthropometric variables were measured and fasting plasma lipids and lipoprotein concentrations were analyzed. In order to carry out rhythmic expression analysis, AT explants were cultured during 24 h and gene expression was performed at the following times (T): 0, 6, 12, and 18 h, with quantitative real-time PCR. Clock genes oscillated accurately and independently of the SCN in AT explants. Their intrinsic oscillatory mechanism regulated the timing of other genes such as hPPARγ and glucocorticoid-related genes. Circadian patterns differed between VAT and SAT. Correlation analyses between the genetic circadian oscillation and components of the metabolic syndrome (MetS) revealed that subjects with a higher sagittal diameter showed an increased circadian variability in hPer2 expression (r = 0.91; P = 0.031) and hBmal1 (r = 0.90; P = 0.040). Data demonstrate the presence of peripheral circadian oscillators in human AT independently of the central circadian control mechanism. This knowledge paves the way for a better understanding of the circadian contribution to medical conditions such as obesity and MetS.
Frailty syndrome is a medical condition that is characterised by a functional decline, usually from 65 years old on, and creates the need for assistance to perform daily living activities. As the population ages, the need for specialised geriatric care will increase immensely, and consequently, the need for specialised services for the care of these people will increase accordingly. From a nutritional point of view, to control or balance the nutritional status of residents will be essential in order to prevent sarcopenia and, consequently, frailty development. In this line, previous studies have highlighted the association among low energy intake, inadequate intake of protein and vitamin D, and an increased risk of frailty development. However, there is a lack of intervention studies on frail patients, especially in the realm of quality clinical trials. The few studies performed to date seem to indicate that there is a protective role of protein supplementation against frailty syndrome. In this regard, it is tempting to suggest daily 30 g protein supplements to prevent frailty. However, it is well established that excess protein can also be harmful; therefore, specific individual characteristics should be considered before prescribing these supplements. On the other hand, the relevance of other nutritional interventions, such as vitamin D, omega-3, and medium-chain triglycerides, is much more scarce in the literature. Therefore, we encourage the development of new clinical trials to carry out effective therapies to prevent frailty development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.