Lifelong learning requires appropriate solutions, especially for corporate training. Workers usually have difficulty combining training and their normal work. In this context, micro-learning emerges as a suitable solution, since it is based on breaking down new concepts into small fragments or pills of content, which can be consumed in short periods of time. The purpose of this paper is twofold. First, we offer an updated overview of the research on this training paradigm, as well as the different technologies leading to potential commercial solutions. Second, we introduce a proposal to add micro-learning content to more formal distance learning environments (traditional Learning Management Systems or LMS), with the aim of taking advantage of both learning philosophies. Our approach is based on a Service-Oriented Architecture (SOA) that is deployed in the cloud. In order to ensure the full integration of the micro-learning approach in traditional LMSs, we have used two well-known standards in the distance learning field: LTI (Learning Tools Interoperability) and LIS (Learning Information Service). The combination of these two technologies allows the exchange of data with the LMS to monitor the student’s activity and results. Finally, we have collected the opinion of lectures from different countries in order to know their thoughts about the potential of this new approach in higher education, obtaining positive feedback.
The emergence of Low-Power Wide-Area Network (LPWAN) technologies allowed the development of revolutionary Internet Of Things (IoT) applications covering large areas with thousands of devices. However, connectivity may be a challenge for non-line-of-sight indoor operation or for areas without good coverage. Technologies such as LoRa and Sigfox allow connectivity for up to 50,000 devices per cell, several devices that may be exceeded in many scenarios. To deal with these problems, this paper introduces a new multi-hop protocol, called JMAC, designed for improving long range wireless communication networks that may support monitoring in scenarios such smart cities or Industry 4.0. JMAC uses the LoRa radio technology to keep low consumption and extend coverage area, and exploits the potential mesh behaviour of wireless networks to improve coverage and increase the number of supported devices per cell. JMAC is based on predictive wake-up to reach long lifetime on sensor devices. Our proposal was validated using the OMNeT++ simulator to analyze how it performs under different conditions with promising results.
The advent and consolidation of the Massive Internet of Things (MIoT) comes with a need for new architectures to process the massive amount of generated information. A new approach, Mist Computing, entails a series of changes compared to previous computing paradigms, such as Cloud and Fog Computing, with regard to extremely low latency, local smart processing, high mobility, and massive deployment of heterogeneous devices. Hence, context awareness use cases will be enabled, which will vigorously promote the implementation of advantageous Internet of Things applications. Mist Computing is expected to reach existing fields, such as Industry 4.0, future 6G networks and Big Data problems, and it may be the answer for advanced applications where interaction with the environment is essential and lots of data are managed. Despite the low degree of maturity, it shows plenty of potential for IoT together with Cloud, Fog, and Edge Computing, but it is required to reach a general agreement about its foundations, scope, and fields of action according to the existing early works. In this paper, (i) an extensive review of proposals focused on Mist Computing is done to determine the application fields and network elements that must be developed for certain objectives, besides, (ii) a comparative assessment between Cloud, Fog, Edge, and Mist is completed and (iii) several research challenges are listed for future work. In addition, Mist Computing is the last piece to benefit from the resources of complete network infrastructures in the Fluid Computing paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.