Several microRNAs (miRNA) have been implicated in nasopharyngeal carcinoma (NPC), a highly invasive and metastatic cancer that is widely prevalent in southern China. In this study, we report that microRNA miR-26a is commonly downregulated in NPC specimens and NPC cell lines with important functional consequences. Ectopic expression of miR-26a dramatically suppressed cell proliferation and colony formation by inducing G 1 -phase cell-cycle arrest. We found that miR-26a strongly reduced the expression of EZH2 oncogene in NPC cells. Similar to the restoring miR-26 expression, EZH2 downregulation inhibited cell growth and cell-cycle progression, whereas EZH2 overexpression rescued the suppressive effect of miR-26a. Mechanistic investigations revealed that miR-26a suppressed the expression of c-myc, the cyclin D3 and E2, and the cyclin-dependent kinase CDK4 and CDK6 while enhancing the expression of CDK inhibitors p14 ARF and p21 CIP1 in an EZH2-dependent manner. Interestingly, cyclin D2 was regulated by miR-26a but not by EZH2, revealing cyclin D2 as another direct yet mechanistically distinct target of miR-26a. In clinical specimens, EZH2 was widely overexpressed and its mRNA levels were inversely correlated with miR-26a expression. Taken together, our results indicate that miR-26a functions as a growth-suppressive miRNA in NPC, and that its suppressive effects are mediated chiefly by repressing EZH2 expression. Cancer Res; 71(1); 225-33. Ó2011 AACR.
Lithium-ion batteries have dominated the high performance and mobile market for last decade. Despite their dominance in many areas, the development of current commercial lithium-ion batteries is experiencing bottlenecks, limited by safety risks such as: leakage, burning, and even explosions due to the low-boiling point organic liquid electrolytes. Solid electrolyte is a promising option to solve or mitigate those issues. Among all solid electrolytes, polymer based solid electrolytes have the advantages of low flammability, good flexibility, excellent thermal stability, and high safety. Numerous researchers have focused on implementing solid polymer based Li-ion batteries with high performance. Nevertheless, low Li-ion conductivity and poor mechanical properties are still the main challenges in its commercial development. In order to tackle the issues and improve the overall performance, composites with external particles are widely investigated to form a polymer-based composite electrolyte. In light of their work, this review discusses the progress of polymer-based composite lithium ion's solid electrolytes. In particular, the structures, ionic conductivities, electrochemical/chemical stabilities, and fabrications of solid polymer electrolytes are introduced in the text and summarized at the end. On the basis of previous work, the perspectives of solid polymer electrolytes are provided especially toward the future of lithium ion batteries.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons associated with dysregulation of iron homeostasis in the brain. Ferroptosis is an iron-dependent cell death process that serves as a significant regulatory mechanism in PD. However, its underlying mechanisms are not yet fully understood. By performing RNA sequencing analysis, we found that the main iron storage protein ferritin heavy chain 1 (FTH1) is differentially expressed in the rat 6hydroyxdopamine (6-OHDA) model of PD compared with control rats. Our present work demonstrates that FTH1 is involved in iron accumulation and the ferroptosis pathway in this model. Knockdown of FTH1 in PC-12 cells significantly inhibited cell viability and caused mitochondrial dysfunction. Moreover, FTH1 was found to be involved in ferritinophagy, a selective form of autophagy involving the degradation of ferritin by ferroptosis. Overexpression of FTH1 in PC-12 cells impaired ferritinophagy and downregulated microtubule-associated protein light chain 3 and nuclear receptor coactivator 4 expression, ultimately suppressing cell death induced by ferroptosis. Consistent with these findings, the ferritinophagy inhibitors chloroquine and bafilomycin A1 inhibited ferritin degradation and ferroptosis in 6-OHDA-treated PC-12 cells. This entire process was mediated by the cyclic regulation of FTH1 and ferritinophagy. Taken together, these results suggest that FTH1 links ferritinophagy and ferroptosis in the 6-OHDA model of PD, and provide a new perspective and potential for a pharmacological target in this disease.
BackgroundThe molecular mechanisms underlying dysregulation of microRNAs have been documented in nasopharyngeal carcinoma (NPC). Our previous study demonstrated that plasma miR-124 was down-regulated in NPC using microarray analysis and quantitative PCR validation. Though growing studies showed that down-regulated miR-124 was closely related to tumourigenesis in various types of cancers, the role of miR-124 in NPC remains largely unknown.MethodsThe expression level of miR-124 was evaluated in NPC cell lines and patient specimens using quantitative reverse transcription-PCR (Real-time qPCR). The clinicopathological significance of the resultant data was later analyzed. Then, we explored the role of miR-124 in NPC tumorigenesis by in vitro and in vivo experiments. Homo sapiens forkhead box Q1 (Foxq1) was confirmed as a novel direct target gene of miR-124 by the dual-luciferase assay and western bolt.ResultsWe found that miR-124 was commonly down-regulated in NPC specimens and NPC cell lines. The expression of miR-124 was inversely correlation with clinical stages and marked on T stages. Then, the ectopic expression of miR-124 dramatically inhibited cell proliferation, colony formation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Furthermore, we identified Foxq1 as a novel direct target of miR-124. Functional studies showed that knockdown of Foxq1 inhibited cell growth, migration and invasion, whereas Foxq1 overexpression partially rescued the suppressive effect of miR-124 in NPC. In clinical specimens, Foxq1 was commonly up-regulated in NPC, and the level increased with clinical stages and T stages. Additionally, the level of Foxq1 was inversely correlated with miR-124.ConclusionsOur results demonstrate that miR-124 functions as a tumor-suppressive microRNA in NPC, and that its suppressive effects are mediated chiefly by repressing Foxq1 expression. MiR-124 could serve as an independent biomarker to identify patients with different clinical characteristics. Therefore, our findings provide valuable clues toward the understanding the of mechanisms of NPC pathogenesis and provide an opportunity to develop new effective clinical therapies in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/1476-4598-13-186) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.