BackgroundThe molecular mechanisms underlying dysregulation of microRNAs have been documented in nasopharyngeal carcinoma (NPC). Our previous study demonstrated that plasma miR-124 was down-regulated in NPC using microarray analysis and quantitative PCR validation. Though growing studies showed that down-regulated miR-124 was closely related to tumourigenesis in various types of cancers, the role of miR-124 in NPC remains largely unknown.MethodsThe expression level of miR-124 was evaluated in NPC cell lines and patient specimens using quantitative reverse transcription-PCR (Real-time qPCR). The clinicopathological significance of the resultant data was later analyzed. Then, we explored the role of miR-124 in NPC tumorigenesis by in vitro and in vivo experiments. Homo sapiens forkhead box Q1 (Foxq1) was confirmed as a novel direct target gene of miR-124 by the dual-luciferase assay and western bolt.ResultsWe found that miR-124 was commonly down-regulated in NPC specimens and NPC cell lines. The expression of miR-124 was inversely correlation with clinical stages and marked on T stages. Then, the ectopic expression of miR-124 dramatically inhibited cell proliferation, colony formation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Furthermore, we identified Foxq1 as a novel direct target of miR-124. Functional studies showed that knockdown of Foxq1 inhibited cell growth, migration and invasion, whereas Foxq1 overexpression partially rescued the suppressive effect of miR-124 in NPC. In clinical specimens, Foxq1 was commonly up-regulated in NPC, and the level increased with clinical stages and T stages. Additionally, the level of Foxq1 was inversely correlated with miR-124.ConclusionsOur results demonstrate that miR-124 functions as a tumor-suppressive microRNA in NPC, and that its suppressive effects are mediated chiefly by repressing Foxq1 expression. MiR-124 could serve as an independent biomarker to identify patients with different clinical characteristics. Therefore, our findings provide valuable clues toward the understanding the of mechanisms of NPC pathogenesis and provide an opportunity to develop new effective clinical therapies in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/1476-4598-13-186) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.