Pseudoxanthoma elasticum (PXE) is a genetic disease characterized by the calcification of elastin fibers. Our aim was to quantify vascular calcification in the arteries and the deposition of 18F-sodium-fluoride (18F-NaF) in the skin and vessel walls with positron emission tomography/computed tomography. This was an observational study including 18 patients with PXE. Vascular calcification was measured in Agatston units, and deposition in the skin and vessel walls was shown using target-to-background ratio (TBR). Severity of the disease was scored by Phenodex. We found higher vascular calcification in the popliteal, femoral, and aortic arch vessels compared to other vascular regions; however, the uptake of radiotracer was the highest in the aorta and femoral arteries. In the skin, the highest uptake was observed in the neck and the axillae. There was no significant association between 18F-NaF deposition in the arteries or skin and the global Phenodex score. In contrast, the Phenodex score was significantly associated in univariate analyses with the averaged vascular calcium score (p < 0.01). In the neck, patients with higher skin Phenodex scores exhibited higher radiotracer uptake. As a conclusion, because vascular calcification is physiological, our data suggested that the detection of cutaneous (neck) 18F-NaF deposits might serve to monitor the calcification process in the short-term for patients with PXE.
IntroductionPseudoxanthoma elasticum (PXE) is a rare disease caused by mutations in the ABCC6 gene. Vitamin K1 is involved in the posttranslational carboxylation of some proteins related to inhibition of the calcification process. Our aim was to investigate, in patients affected by PXE, baseline levels of vitamin K1-dependent proteins and -metabolites and whether parenteral administration of phytomenadione was effective in modulating their levels.MethodsWe included eight PXE patients with typical clinical symptoms (skin, retina, and vascular calcification) and two ABCC6 causative mutations; 13 clinically unaffected first-degree patients’ relatives (9 carrying one ABCC6 mutation and 4 non-carriers). We assessed urinary vitamin K1 metabolites and serum Glu- and Gla-OC, Gas6 and undercaboxylated prothrombin (PIVKA-II), at baseline and after 1 and 6 weeks after a single intramuscular injection of 10 mg vitamin K1.ResultsComparison of PXE patients, heterozygous, and non-carriers revealed differences in baseline levels of serum MK-4 and of urinary vitamin K metabolites. The response to phytomenadione administration on vitamin K-dependent proteins was similar in all groups.ConclusionThe physiological axis between vitamin K1 and vitamin K-dependent proteins is preserved; however, differences in the concentration of vitamin K metabolites and of MK-4 suggest that vitamin K1 metabolism/catabolism could be altered in PXE patients.
Active microcalcification of elastic fibers is a hallmark of pseudoxanthoma elasticum and it can be measured with the assessment of deposition of 18F-NaF using a PET/CT scan at the skin and vascular levels. It is not known whether this deposition changes over time in absence of specific therapy. We repeated in two years a PET/CT scan using 18F-NaF as a radiopharmaceutical in patients with the disease and compared the deposition at skin and vessel. Furthermore, calcium score values at the vessel wall were also assessed. Main results indicate in the vessel walls that calcification progressed in each patient; by contrast, the active microcalcification, measured and target-to-background ratio showed reduced active deposition. By contrast, at skin levels (neck and axillae) the uptake of the pharmaceutical remains unchanged. In conclusion, because calcification in the arterial wall is not specific for pseudoxanthoma elasticum condition, the measurement of the deposition of 18F-NaF in the neck might be potentially used as a surrogate marker in future trials for the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.