The development of catalysts able to assist industrially important chemical processes is a topic of high importance. In view of the catalytic capabilities of small metal clusters, research efforts are being focused on the synthesis of novel catalysts bearing such active sites. Here we report a heterogeneous catalyst consisting of Pd clusters with mixed-valence 0/+1 oxidation states, stabilized and homogeneously organized within the walls of a metal-organic framework (MOF). The resulting solid catalyst outperforms state-of-the-art metal catalysts in carbene-mediated reactions of diazoacetates, with high yields (>90%) and turnover numbers (up to 100,000). In addition, the MOF-supported Pd clusters retain their catalytic activity in repeated batch and flow reactions (>20 cycles). Our findings demonstrate how this synthetic approach may now instruct the future design of heterogeneous catalysts with advantageous reaction capabilities for other important processes.
A mononuclear Dy(III) complex with a non-Schiff base compartmental ligand has been prepared and characterised by X-ray crystallography and ac magnetic susceptibility measurements. The complex exhibits SIM behaviour induced by dilution and/or magnetic field with two thermally activated relaxation processes.
The synthesis, X-ray structures, and magnetic behavior of two new, three-dimensional compounds [W(IV)[(mu-CN)(4)Co(II)(H(2)O)(2)](2).4H(2)O](n) (1) and [[W(V)(CN)(2)](2)[(mu-CN)(4)Co(II)(H(2)O)(2)](3).4H(2)O](n) (2) are presented. Compound 1 crystallizes in the tetragonal system, space group I4/m with cell constants a = b = 11.710(3) A, c = 13.003(2) A, and Z = 4, whereas 2 crystallizes in the orthorhombic system, space group Cmca with cell constants a = 13.543(5) A, b = 16.054(6) A, c = 15.6301(9) A, and Z = 4. The structure of 1 shows alternating eight-coordinated W(IV) and six-coordinated Co(II) ions bridged by single cyanides in a three-dimensional network. The geometry of each [W(IV)(CN)(8)](4-) entity in 1 is close to a square antiprism. Its eight cyanide groups are coordinated to Co(II) ions which have two coordinated water molecules in trans position. The structure of 2 consists of alternating eight-coordinated W(V) and six-coordinated Co(II) ions linked by single cyanide bridges in a three-dimensional network. Each [W(V)(CN)(8)](3-) unit shows a geometry close to a square antiprism. Only six of its eight cyanide groups are coordinated to Co(II) ions while the other two are terminal. The Co(II) ion in 2 has the same CoN(4)O(2) environment as in 1. The magnetic behavior of 1 is that of magnetically isolated high spin Co(II) ions (S(Co) = 3/2), bridged by the diamagnetic [W(IV)(CN)(8)](3-) units (S(W(IV)) = 0). The magnetic behavior of 2, where the high spin Co(II) ions are bridged by the paramagnetic [W(V)(CN)(8)](3-) units [S(W(V)) = 1/2], is that of ferromagnetically coupled Co(II) and W(V) giving rise to an ordered ferromagnetic phase below 18 K. The magnetic properties of 1 are used as a blank to extract the parameters that are useful to analyze the magnetic data of compound 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.