Aim
Correlative distribution models have been used to identify potential climatic controls of mangrove range limits, but there is still uncertainty about the relative importance of these factors across different regions. To provide insights into the strength of climatic control of different mangrove range limits, we tested whether temporal variability in mangrove abundance increases near range limits and whether this variability is correlated with climatic factors thought to control large‐scale mangrove distributions.
Location
North and South America.
Time period
1984–2011.
Major taxa studied
Avicennia germinans, Avicennia schuaeriana, Rhizophora mangle, Laguncularia racemosa.
Methods
We characterized temporal variability in the enhanced vegetation index (EVI) at mangrove range limits using Landsat satellite imagery collected between 1984–2011. We characterized greening trends at each range limit, examined variability in EVI along latitudinal gradients near each range limit, and assessed correlations between changes in EVI and temperature and precipitation.
Results
Spatial variability in mean EVI was generally correlated with temperature and precipitation, but the relationships were region specific. Greening trends were most pronounced at range limits in eastern North America. In these regions variability in EVI increased toward the range limit and was sensitive to climatic factors. In contrast, EVI at range limits on the Pacific coast of North America and both coasts of South America was relatively stable and less sensitive to climatic variability.
Main conclusions
Our results suggest that range limits in eastern North America are strongly controlled by climate factors. Mangrove expansion in response to future warming is expected to be rapid in regions that are highly sensitive to climate variability (e.g. eastern North America), but the response in other range limits (e.g. South America) is likely to be more complex and modulated by additional factors such as dispersal limitation, habitat constraints, and/or changing climatic means rather than just extremes.
Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans.
Sargassum filicinum Harvey is an important ecological engineer in the subtidal regions of northeastern Asian waters, as it forms marine forests that provide shelter for invertebrates and fishes. First discovered in Long Beach Harbor, CA, USA, in 2003, S. filicinum was thought to occur mainly in the California Channel Islands and near Ensenada, Mexico. However, during a survey from 2007 to 2009, we found S. filicinum off Isla Natividad, which is an extension of its range 550 km south of its last recorded location in the Mexican Pacific. Morphological and molecular data support the identification of the species. Considering its faster spread from Ensenada to Isla Natividad (4 years) than Sargassum muticum (14 years), S. filicinum may follow the path of S. muticum and arrive at the subtropical-tropical Pacific coast of Mexico. Although S. muticum has become well established within the local seaweed flora, S. filicinum may replace native Sargassum species and change the composition of local marine floras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.