Ao Professor Dr. Carlos Alberto Luengo, pela orientação durante a realização deste trabalho.Aos amigos do Grupo Combustíveis Alternativos do IFGW, pela acolhida e apoio para a execução do presente trabalho, em especial a Luis Fernando Maestro, pelo suporte no reator de arco elétrico.Aos professores Carlos Manuel Giles e Kleber Pirota pelas avaliações e sugestões feitas no exame de qualificação de mestrado, e no seminário de pre-defesa de tese.Ao pessoal do grupo de física aplicada do IFGW, em especial a Dúber Murillo, quem me ajudou no microscópio AFM e sua orientadora, Mônica Alonso Cotta.Aos estudantes, professores e técnicos do Laboratório Nacional de Luz Sincrotron pela ajuda na microscopia eletrônica de varredura, e em particular a Alexandre Lisita.A Rosane Palisari e os técnicos do Laboratório Multiusuário pela colaboração nas medidas de microscopia eletrônica.À professora Iris Torriani pela colaboração nos experimentos de espalhamento de raios x a baixo ângulo, além das revisões da tese, sua avaliação e suas sugestões como parte da banca.Ao profesor José Maurício Rosolen pelas avaliações como parte da banca da tese. À CAPES, pelo suporte financeiro. iv DedicatóriaEste trabalho nunca teria sido feito sem a colaboração de muitas pessoas que ajudaram na minha pesquisa de forma direita ou endireita.Ao IFGW pela infra-estrutura necessária e aos seus funcionários pelo apoio.Aos companheiros da república que me assistiram e receberam com muito carinho.À toda comunidade brasileira pelo recebimento e colaboração.Aos amigos de diferentes partes da Latino América e de ainda mais longe, que tiveram um contato muito especial comigo.A mi familia, quienes me apoyaran durante gran tiempo y siempre me dieron ánimos constantes.A Jennifer, por su amor, cariño y paciencia em esta larga travesía, esperando que sólo sea un gran principio para nuestros múltiples sueños.A las diferentes personas que me acompañaron a lo largo de mi vida estudiantil, desde el colegio
Among various analytical techniques, X-Ray Fluorescence (XRF) and Particle-Induced X-Ray Emission (PIXE) allow a highly sensitive, multi-elementary analysis, traditionally used in areas dealing with thin films, mineral, geological, archaeological and biological samples, etc. PIXE and XRF techniques allow quantifying the elemental composition of a sample measuring their characteristic X-rays. In thick homogeneous samples, the determination of the elemental mass concentrations requires prior knowledge of several parameters involved in the interaction of radiation with matter, such as the proton stopping power in the sample for PIXE and the X-ray mass absorption coefficients for both PIXE and XRF, which in turn depend on the elemental concentrations of the sample. In this work we will review and evaluate different methods for determining the mass concentrations that have been developed over the years, obtaining good accuracy in most cases, especially with geological and mineral samples. In samples with low-Z elements, like H, B, C, N, O and/or F, not detected in PIXE nor XRF, the methods to determine elemental concentrations do not have the same level of accuracy, except for major elements. Knowing the concentrations of these major elements, we can extract information of the undetected elements in the samples. We suggest a method for determining the concentrations of trace elements based on the knowledge of at least two major elements, constructing an equivalent sample-matrix constituted by hydrogen, carbon and oxygen with the same X-ray mass absorption coefficients and proton stopping power of the original sample-matrix made of hydrogen, carbon, nitrogen and oxygen, which are the major elements in biological and organic samples. Hence, the trace elements of the sample can be fully analyzed with an accuracy better than 1%. In PIXE analysis, under certain conditions, numerical calculations on thick and homogeneous samples show that on common materials, it is possible to retrieve the hydrogen amount in the sample with acceptable accuracy. The calculation of the uncertainties indicates that the method of determining hydrogen is quite sensitive to instrumental uncertainties, stressing the need for more precise PIXE measurements. A generalization of the method is also considered for all kinds of low-Z sample-matrix, not only biological or organic, having accuracies lower than 10%. Other applications and limitations are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.