The problem of speci cation errors in sample selection models has received considerable attention both theoretically and empirically. However, very few is known about the nite sample behavior of two step estimators. In this paper we investigate by simulations both bias and nite sample distribution of these estimators when ignoring heteroskedasticity in the sample selection mechanism. It turns out that under conditions traditionally faced by practitioners, the misspeci ed parametric two step estimator (Heckman, 1979) performs better, in nite sample sizes, than the robust semiparametric one (Ahn and Powell, 1993). Moreover, under very general conditions, we show that the asymptotic bias of the parametric two step estimator is linear in the covariance between the sample selection and the participation equation.
La estadística oficial constituye un bien público al servicio de las sociedades democráticas.La pandemia de la COVID-19 ha demostrado la extraordinaria resiliencia de la estadística, aunquetambién ha puesto de manifiesto la necesidad de adoptar medidas adicionales orientadasa establecer un mejor uso de las nuevas fuentes de datos, que ofrecen una oportunidad única ala estadística para satisfacer de forma eficiente las crecientes demandas de los usuarios, incrementandola frecuencia y granularidad de la información así como la disponibilidad de nuevosconjuntos de datos, obteniendo una estadística de alta definición en tiempo real que redundaríaen un mejor análisis y evaluación de políticas públicas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.